The cube root of a rational number
 Complete the following table :

| Number a | 8 | 125 | -27 | $\cdots \cdots$ | $3 \frac{3}{8}$ | $-\frac{8}{125}$ | $\cdots \cdots$ | $\cdots \cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sqrt[3]{\mathbf{a}}$ | $\ldots \ldots$ | $\ldots \ldots$ | $\ldots \ldots$ | -10 | $\ldots \ldots$ | $\ldots \ldots$ | 6 | -4 |

2 Complete:
(1) $\sqrt[3]{216}=$ $\qquad$
(3) $\sqrt[3]{0.001}=$ $\qquad$
(5) $\operatorname{cas} \sqrt[3]{8}+\sqrt[3]{-8}=$ $\qquad$
(7) $\sqrt[3]{27}-\sqrt[3]{-27}=$ $\qquad$
(9) $-\sqrt[3]{-1}-\sqrt{1}=$
(11) $\sqrt[3]{\mathrm{a}^{3}}=$ $\qquad$
(13) $\sqrt[3]{\cdots \cdots \cdots \cdot}=4$
(15) $|\sqrt[3]{-125}|=\sqrt{\ldots \ldots \ldots .}$
(2) $\sqrt[3]{-343}=$ $\qquad$
(4) $\sqrt[3]{-\frac{8}{27}}=$ $\qquad$
(6) $)^{3} \sqrt[3]{27}-\sqrt[3]{64}=$ $\qquad$
(8) $\sqrt{9}+\sqrt[3]{-8}=$ $\qquad$
(10) $\frac{-\sqrt[3]{64}}{\sqrt{64}}=\ldots \ldots \ldots \ldots$
(12 $\sqrt[3]{-27 a^{6}}=$ $\qquad$
(14) $\sqrt{16}=\sqrt[3]{ }$ $\qquad$
$16 \sqrt[3]{64+\cdots \cdots \cdots \cdots}=5$

## $\sum_{j}^{\llcorner }$

## 3 Choose the correct answer from those given :

(1) $\sqrt[3]{(-8)^{2}}=$
(a) 2
(b) -2
(c) 4
(d) -4
(2) $\sqrt[3]{\left(\frac{1}{8}\right)^{2}}=$
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{1}{8}$
(d) $\frac{1}{16}$
(3) $\sqrt[3]{-64}+\sqrt{16}=$ $\qquad$
(a) zero
(b) 8
(c) -8
(d) $\pm 8$

- 4 (1) $\sqrt{25}-\sqrt[3]{-125}=$
(a) 10
(b) zero
(c) 5
(d) $\pm 5$
- $5 \sqrt{(-2)^{2}}+\sqrt[3]{(-2)^{3}}=$
(a) -4
(b) 8
(c) 4
(d) zero
(6) $\sqrt[3]{3 \frac{3}{8}}+\sqrt{0.25}=$
(a) $\frac{3}{2}$
(b) $\frac{1}{2}$
(c) 2
(d) -2
$7 \sqrt[3]{0.001 \times \frac{1}{8}}=$
(a) $\frac{1}{2}$
(b) 2
(c) $\frac{1}{20}$
(d) 20
- B $\sqrt[3]{1000} \times \sqrt[3]{-0.008}=$
(a) $\frac{1}{2}$
(b) 10
(c) 2
(d) -2
-9 $\sqrt[3]{-27}+\sqrt{12 \frac{1}{4}}+\sqrt[3]{0.125}=$
(a) 1
(b) zero
(c) -1
(d) $\frac{11}{2}$
(10) If $-\sqrt{25}=\sqrt[3]{y}$, then $y=$
(a) 5
(b) -5
(c) 125
(d) -125
(11) If $x^{3}=64$, then $\sqrt{x}=$
(a) 4
(b) -4
(c) 2
(d) -2
(12. If $x^{3}=27$, then $x^{2}=$
(a) 3
(b) 6
(c) 9
(d) 81
(13) $\sqrt[3]{x^{6}}=\sqrt{\ldots \ldots \ldots . .}$
(a) $x^{3}$
(b) $x^{2}$
(c) $x$
(d) $x^{4}$

114 If $\frac{x}{3}=\frac{9}{x^{2}}$, then $x=$
(a) 1
(b) 3
(c) 9
(d) 27

## 4 Find the value of $\boldsymbol{X}$ in each of the following :

(1) $\sqrt[3]{x}=5$
(2) $\sqrt[3]{x}=-\frac{1}{4}$
(4) $\sqrt[3]{x}-3=-1$
(5) $x^{3}=-8$
(7) $x^{3}+5=32$
(8) $2 x^{3}=54$
(3) $\sqrt[3]{x}=-\sqrt{4}$
(B) $\operatorname{cog} x^{3}=64$
(9) $\frac{1}{5} x^{3}=-200$

5 Find the S.S. of each of the following equations in $\mathbb{Q}$ :
(1) $x^{3}+27=0$
(2) $8 x^{3}+7=8$
(3) $x^{3}+16=\frac{3}{8}$
(4) $2 x^{3}-5=x^{3}+3$
5 $(x+3)^{3}=343$
(6) $(3 x+1)^{3}=-8$
(7) $(2 x+1)^{3}-7=20$
(8) $(5 x-2)^{3}+10=18$

6 Find each of the following :
(1) $\sqrt[3]{2 \frac{1}{4} \div \frac{2}{3}}$
(2) $-\sqrt[3]{2^{9} \times 3^{6}}$
(3) $\sqrt{\sqrt[3]{729}}$
(4) $\sqrt[3]{\sqrt[3]{512}}$
(5) $\sqrt{27 \sqrt[3]{27}}$

## Applications

7 A cube of volume $27 \mathrm{~cm}^{3}$. Find the area of one face.

9 If the half of the cube of a number equals 32 , find this number.

10 Find the inner edge length of a cube vessel with capacity of one litre.
« 10 cm .

110 Find the diameter length of a sphere whose volume is $\frac{1372}{81} \pi$ cube unit. « $\frac{14}{3}$ length unit»
12 Find the length of the diameter of a sphere whose volume is $113.04 \mathrm{~cm}^{3} .(\pi=3.14) « 6 \mathrm{~cm} . »$

## For excellent pupils

13 Find the S.S. of each of the following equations in $\mathbb{Q}$ :
(1 $\left(x^{2}+6\right)^{3}=1000$
(2) $\left(x^{3}-14\right)^{2}=169$
(3) $\sqrt[3]{(x-1)^{2}}=\sqrt[3]{25}$
(4) $\sqrt[3]{(x-2)\left(x^{2}-4 x+4\right)}=3$

14 If $\sqrt[3]{\sqrt{x}+19}=3$, find the value of $\sqrt[3]{x}$

15 A man was asked about the age of his father and the age of each of his three sons.
His answer was as follows :
My age is half the age of my father. The age of my eldest son is the square root of the age of my father and the age of my middle son is the cube root of the age of my father and the age of my youngest daughter is the quotient of the age of my eldest son by the age of my middle son. Given that the age of my eldest son is twice the age of my middle son.
What is the age of each of his father and his three sons ?


The set of irrational number@


1 In each of the following, show which of them is a rational number and which of them is an irrational number :
(1)-5
(5) $-\sqrt{36}$
(9) -5 |
(13) $\sqrt[3]{3 \frac{3}{8}}$
(17) $\frac{\text { zero }}{3}$
(2) $2 \frac{2}{3}$
(B) $\sqrt[3]{36}$
(10) $\sqrt[3]{-\frac{64}{81}}$
(14) $\sqrt[3]{0.343}$
(18) $\frac{\sqrt{9}}{\sqrt{4}}$
(3) 2.06
(7) $\sqrt{7}$
(11) $\sqrt{\frac{25}{16}}$
(15) $\frac{\pi}{2}$
(19) $\sqrt{9}+\sqrt{16}$
(4) $2.3 \times 10^{5}$

8 zero
(12) $\sqrt{\frac{1}{3}}$

16 $(-5)^{\text {zero }}$
(20) $\sqrt{4}-\sqrt{11}$

2 Find an approximated value for each of the following numbers :
(1) $\sqrt{11}$ "to the nearest hundredth".
(2) $\sqrt[3]{7}$ "to the nearest tenth".
(3) $\sqrt[3]{-9}$ "to the nearest tenth".

3 Find two consecutive integers for each of the following numbers to be included between them :
(1) $\sqrt{5}$
(2) $\sqrt{12}$
(3) $\sqrt[3]{10}$
(4) $\sqrt[3]{-20}$

4 If $X$ is an integer，find the value of $X$ in each of the following cases：
（1）$x<\sqrt{2}<x+1$
（2）$x<\sqrt{80}<x+1$
（3）$x<\sqrt[3]{5}<x+1$
（4）$x<\sqrt[3]{50}<x+1$
《8＊
（5）$x<\sqrt[3]{-100}<x+1$
（E）$x<|-\sqrt{35}|<x+1$
＊＊ 5 \％ «5»

5 Find an approximated value for each of the following numbers，then check your answer using the calculator ：
（1）$\sqrt{20}$
（2）$\sqrt[3]{17}$
（3）$\sqrt{5}+1$
（4）$\sqrt[3]{9}-1$

6 Choose the correct answer from the given ones ：
（1）The irrational number in the following numbers is
（a）$\sqrt{\frac{1}{4}}$
（b）$\sqrt[3]{8}$
（c）$\sqrt{\frac{4}{9}}$
（d）$\sqrt{2}$
（2．If $X=\sqrt{2}, y=2$ ，then which of the following does not represent a rational number ？
（a）$x^{2}+y$
（b）$x+y^{2}$
（c）$\sqrt{x^{2} y}$
（d）$\sqrt{2} x y$
（3）The irrational number located between 2 and 3 is
（a）$\sqrt{10}$
（b）$\sqrt{7}$
（c） 2.5
（d）$\sqrt{3}$
［4］The irrational number located between -2 and -1 is $\qquad$
（a）-3
（b）$-1 \frac{1}{2}$
（c）$-\sqrt{3}$
（d）$\sqrt{2}$
（5）$\sqrt{10} \approx$ $\qquad$
（a） 2.99
（b） 3.71
（c） 3
（d）-3.2

으 The nearest integer to $\sqrt[3]{25}$ is
（a） 5
（b） 3
（c） 2
（d） 12.5
－ 7 If $\mathrm{n} \in \mathbb{Z}_{+}, \mathrm{n}<\sqrt{26}<\mathrm{n}+1$ ，then $\mathrm{n}=$ $\qquad$
（a） 25
（b） 5
（c）-5
（d） 24
（8）The side length of a square whose area is $6 \mathrm{~cm}^{2}$ ．is $\qquad$
（a）a natural number．
（b）an integer．
（c）a rational number．
（d）an irrational number．
（9）The area of a square whose side length is $\sqrt{3} \mathrm{~cm}$ ．is $\qquad$ $\mathrm{cm}^{2}$
（a） $4 \sqrt{3}$
（b） 9
（c） 3
（d） 6
（10）The square whose area is $10 \mathrm{~cm}^{2}$ ，its side length is $\qquad$ cm ．
（a） 5
（b）-5
（c）$\sqrt{10}$
（d）$-\sqrt{10}$

11）The S．S．of the equation ：$(x-\sqrt{5})(x+\sqrt{3})=0$ in $\mathbb{Q}$ is
（a）$\{\sqrt{5}\}$
（b）$\{-\sqrt{3}\}$
（c）$\{-\sqrt{5}, \sqrt{3}\}$
（d）$\{\sqrt{5},-\sqrt{3}\}$

7 Find the value of $x$ in each of the following cases and determine whether $x \in \mathbb{Q}$ or $x \in \mathbb{Q}:$
（1） $5 x^{2}=10$
$《 \pm \sqrt{2}$ »
（3）（1a）$x^{3}=125$ ＊ 5 ＊
（5） $0.1 X^{2}=10$
$« \pm 10 »$
（7）$(x-1)^{2}=4$
$« 3$ or $-1 »$
（2） $4 x^{2}=9$
$《 \pm \frac{3}{2}$＂
（4） $3 x^{3}=27$
（G） $0.001 x^{3}=-8$
《－20＊
［B］$(x-5)^{3}=1$

8 Find in $\mathbb{Q}$ the S．S．of each of the following equations ：
（1）$x^{2}=13$
（2．$x^{3}=16$
（3）$\frac{2}{5} x^{2}=\frac{25}{2}$
（4）$\frac{5}{4} x^{3}=-2$
（5） $125 x^{3}-7=20$
（6）$\frac{1}{4} x^{2}+2=66$

## 9 Prove that：

（7）$\sqrt{2}$ is included between 1.4 and 1.5
（a）$\sqrt{11}$ is included between 3.31 and 3.32
（3）$\sqrt[3]{2}$ is included between 1.2 and 1.3
（4）$\sqrt[3]{15}$ is included between 2.4 and 2.5
（5）$\sqrt[3]{-17}$ is included between -2.6 and -2.5
（6）$\sqrt{3}+1$ is included between 2.7 and 2.8

10 Determine the point that represents each of the following numbers on the number line :
(1) $\sqrt{3}$
(2) $-\sqrt{11}$
(3) $\sqrt{10}$
(4) $\sqrt{5}+1$
(5) $2-\sqrt{7}$

11 Draw the number line and label point A which represents $\sqrt{2}$

- Label point $B$ which represents $1+\sqrt{2}$
- Label point C which represents $1-\sqrt{2}$

12 Draw the right-angled triangle ABC at B where $\mathrm{AB}=1 \mathrm{~cm}$. and $\mathrm{BC}=3 \mathrm{~cm}$., then use the figure to determine the points that represent the following numbers on the number line :
(1) $\sqrt{10}$
(2) $-\sqrt{10}$
(3) $2+\sqrt{10}$
(4) $3-\sqrt{10}$

13 Calculate the side length and the diagonal length of a square whose area equals $10 \mathrm{~cm}^{2}$.
$« \sqrt{10} \mathrm{~cm} ., \sqrt{20} \mathrm{~cm}$. »

## Life Application

14 A tree is 3 metres long. Its upper part was broken because of the wind and it made an angle with the surface of the ground. If the length of the left part of the tree is 1 metre, find the distance between the base of the tree and the point
 of touching of its top with the ground.

## For excellent pupils

15 Without using the calculator, prove that $\sqrt{3}+\sqrt{2}$ is included between 3 and 4

## Free part

 Notebook- Accumulative tests.
- Monthly tests.
- Important questions.
- Final revision.
- Final examinations.

The set of real numbers $\mathbb{R}$ and ordering numbers in $\mathbb{R}^{2}$

From the school book

1 Complete the following table by placing $(\checkmark)$ in the suitable place as
shown in the first case ：

| The number | Natural | Integer | Rational | Irrational | Real |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -5 | $\boldsymbol{x}$ | $\checkmark$ | $\checkmark$ | $\mathbf{x}$ | $\checkmark$ |
| $\sqrt{2}$ |  |  |  |  |  |
| $1 \frac{1}{2}$ |  |  |  |  |  |
| $\sqrt[3]{9}$ |  |  |  |  |  |
| $\|-2\|$ |  |  |  |  |  |
| $-\sqrt{4}$ |  |  |  |  |  |
| $\frac{5}{2}$ |  |  |  |  |  |
| 0.3 |  |  |  |  |  |
| $\sqrt{-1}$ |  |  |  |  |  |

2 If $x \in \mathbb{R}$ ，state whether $X$ is positive or negative or anything else in each of the following cases ：
（1）［D）$x>0$
（2）$x<0$
（3）$x>|-4|$
（4）$|-5|<x<7$
（5）$-2<x<0$
［6］$|-1|<x<|-7|$

3 Put the suitable sign ( $>,<$ or $=$ ) :
(1)
2
(4) $\sqrt[3]{ } \sqrt[3]{-24} \cdots \cdots \cdots-2$
(7) $1+\sqrt{3}$ $\sqrt{5}$
(2) $D \sqrt{7}$ 2.6
(5) $3-\sqrt{5} \ldots \ldots \ldots \sqrt[3]{-1}$
$8 \sqrt[3]{3}-1$ $\qquad$ 0.2
(3) $\sqrt[3]{24}$ 3
(6) $\sqrt[3]{8} \sqrt[3]{8} \cdots \cdot \sqrt{4}$
(9) $\sqrt{2}-1 \cdots \cdots \cdots .1-\sqrt{2}$

## 4 Choose the correct answer from those given :

(1) $\mathbb{R}=$
(a) $\mathbb{Q} \cup(\overline{\mathbb{Q}}$
(b) $\mathbb{Z}_{+} \cup \mathbb{Z}_{-}$
(c) $\mathbb{R}_{+} \cup \mathbb{R}_{-}$
(d) $\mathbb{N} \cup \mathbb{R}_{-}$
(2) $\mathbb{Q} \cap \mathbb{Q}=$
(a) ©
(b) © $\mathbb{Q}$
(c) $\mathbb{R}$
(d) $\varnothing$

- $3 \mathbb{Q} \cup \stackrel{Q}{\mathbb{Q}}=$
(a) $\varnothing$
(b) $\mathbb{R}$
(c) ©
(d) $\stackrel{\otimes}{\mathbb{Q}}$
- $4 \mathbb{R}_{+} \cap \mathbb{R}_{-}=$
(a) $\varnothing$
(b) $\mathbb{R}$
(c) $\mathbb{R}_{+}$
(d) $\mathbb{R}_{-}$
- $5 \mathbb{R}_{+} \cup \mathbb{R}_{-}=$ $\qquad$
(a) $\mathbb{R}$
(b) $\varnothing$
(c) $\mathbb{R}_{+}$
(d) $\mathbb{R}^{*}$
( $\overline{\mathrm{E}} \mathbb{R}-\widehat{\mathbb{Q}}=$ $\qquad$
(a) $\mathbb{R}$
(b) $\varnothing$
(c) $\mathbb{Q}$
(d) $\{0\}$
( $7 \mathbb{R}-\mathbb{Q}=$ $\qquad$
(a) $\stackrel{\otimes}{Q}$
(b) $\mathbb{R}$
(c) $\varnothing$
(d) $\{0\}$
© $B \mathbb{R}_{+} \cap\{-1,0,1\}=$ $\qquad$
(a) $\{0,1\}$
(b) $\{1\}$
(c) $\{0\}$
(d) $\varnothing$
g $\{x: x \in \mathbb{R}, x<0\}=$ $\qquad$
(a) $\mathbb{R}_{+}$
(b) $\mathbb{R}_{-}$
(c) $\mathbb{R}^{*}$
(d) $\mathbb{R}$

10. If $X$ is a negative real number, then which of the following numbers is positive ?
(a) $x^{2}$
(b) $x^{3}$
(c) $2 x$
(d) $\frac{x}{2}$
11) If $\frac{1}{\mathrm{a}}$ and $\frac{\mathrm{a}}{\sqrt{5}}$ are two real numbers included between 0 and 1 , then $\mathrm{a}=$
(a) -2
(b) 1
(c) $\sqrt{5}$
(d) 2
(12) If $x \in \mathbb{R}_{+}, y \in \mathbb{R}_{+}$and $x^{2}>y^{2}$, then
(a) $x>y$
(b) $x<y$
(c) $x=y$
(d) $x \leq y$
(13) $\sqrt{(2-\pi)^{2}} \cdots \cdots \cdots . . .(2-\pi)$ (where $\pi$ is the ratio between the circumference of the circle and its diameter length)
(a) $=$
(b) $<$
(c) $>$
(d) $\leq$

- (14) The S.S. of the equation : $x^{2}+1=0$ in $\mathbb{R}$ is
(a) $\{-1\}$
(b) $\{1,-1\}$
(c) $\{1\}$
(d) $\varnothing$

5 Arrange the following numbers ascendingly :
(1) $\sqrt{8},-\sqrt{3}, \sqrt{15}, \sqrt{5},-\sqrt{7}$ and $-\sqrt{11}$
(2) $\sqrt{27},-\sqrt{45}, \sqrt{20}, 0.6$ and $\sqrt[3]{-1}$

6 Arrange the following numbers descendingly :
(1) $\sqrt{62}, 8,-\sqrt{50}$ and $\sqrt{70}$
(2) $\sqrt{6}, 9,-\sqrt{10},-\sqrt{7},-\sqrt{50}$ and $\sqrt{101}$

7 Write three positive irrational numbers less than 2
8 Write three negative irrational numbers greater than $-\sqrt{6}$
Write four irrational numbers included between 15 and 17
10 Prove that $\sqrt{3}$ is between 1.7 and 1.8 , then represent $\sqrt{3}, 1.7$ and 1.8 on the number line.
11 Solve the following equations to the nearest hundredth given $x \in \mathbb{R}$ :
(1) $x^{2}-6=0$
(2) $\frac{3}{4} x^{2}=24$
(3) $\frac{1}{2} x^{2}-5=0$
(4) $5 x^{3}+3=2$
(5) $\frac{3}{4} x^{2}+2=-11$
(6) $\frac{2}{x^{3}}+5=21 \quad(x \neq 0)$
[7) $\left(x^{2}-9\right)\left(x^{3}-5\right)=0$
8 $\left(2 x^{3}-5\right)\left(x^{2}+1\right)=0$

## Geometric Applications

12.10 Find the side length of a square whose area is $5 \mathrm{~cm}^{2}$. Is the side length a rational number?
13.4 Find the edge length of a cube whose volume is $1.728 \mathrm{~cm}^{3}$. Is the edge length a rational number?

14 A cube whose total area is $13.5 \mathrm{~cm}^{2}$. Find its edge length. Is the edge length a rational number?

15 A square is of side length 6 cm . Find its diagonal length.

16 A square is of area $32 \mathrm{~cm}^{2}$. Find its side length and its diagonal length. $« \sqrt{32} \mathrm{~cm} ., 8 \mathrm{~cm}$.»

17 An isosceles right-angled triangle, the length of one side of its right-angle $=5 \mathrm{~cm}$.
Find the length of its hypotenuse.

18 A rectangle with dimensions 5 cm . and 7 cm . Find the length of its diagonal. And if its area equals the area of a square, then find the side length of the square and its diagonal length.

## For excellent pupils

19 Without using the calculator, prove that: $\sqrt[3]{3}>\sqrt{2}$

20 Two real numbers, the sum of their squares is 7 and the greater number is 2
Find the other number.
$<\sqrt{3}$ or $-\sqrt{3} \geqslant$


Choose a number from 1 to 9 , multiply it by 3 , add 3 to the product, and multiply the result by 3 once again "use calculator" Find the sum of the digits of the product. The answer is always 9 .


Problem Solving
1 Complete the following table :

| The interval | Expression by description method | Its representation on the number line |
| :---: | :---: | :---: |
| 1 D⿴ $[-1,2]$ | $\{\chi:-1 \leq \chi \leq 2, \chi \in \mathbb{R}\}$ |  |
| 2) $[1,3[$ | ..................................... | $\ldots$ |
| 3 [1] . . . . . . | $\{\chi: 0<\chi \leq 3, \chi \in \mathbb{R}\}$ |  |
| 4 | ........ |  |
| (5) $-\infty, 1]$ | ... | .................................... |
| 6 ... |  |  |
| 7 . | $\{x: x<4, \chi \in \mathbb{R}\}$ |  |
| $8[-2, \infty[$ | ..................................... | $\ldots$ |

2 Choose the correct answer from the given ones :
(1) $\mathbb{R}=$ $\qquad$
(a) $\mathbb{R}_{+} \cap \mathbb{R}_{-}$
(b) $\mathbb{R}_{+} \cup \mathbb{R}_{-}$
(c) $]-\infty, \infty[$
(d) $\mathbb{Q} \cap \stackrel{(Q}{\mathbb{Q}}$
(2) $\mathbb{R}_{+}=$
(a) $] 0, \infty[$
(b) $]-\infty, 0[$
(c) $[0, \infty[$
(d) $]-\infty, 0]$

## 

(3 $\mathbb{R}_{-}=$
(a) $] 0, \infty[$
(b) $]-\infty, 0[$
(c) $[0, \infty[$
(d) $]-\infty, 0]$
(4) The set of non-negative real numbers $=$
(a) $] 0, \infty[$
(b) $]-\infty, 0[$
(c) $[0, \infty[$
(d) $]-\infty, 0]$

- 5 The set of non-positive real numbers $=$ $\qquad$
(a) $] 0, \infty[$
(b) $]-\infty, 0[$
(c) $[0, \infty[$
(d) $]-\infty, 0]$

3 Complete each of the following using one of the symbols $\in$ or $\notin$ :
13 $\qquad$ $[3,5]$
(3) 0 $\qquad$ $[-1,4[$
(5) ICD $\sqrt{9}$ $\qquad$ $\ldots \ldots \ldots]-3, \infty[$
$\times 10^{-5} \ldots \ldots \ldots . \mathbb{R}_{+}$
(7) $1.3 \times 10^{-5} \cdots \cdots \cdots . \mathbb{R}_{+}$
(2)-2 $\qquad$ ] $-2,1$ ] (9) 5 $\qquad$ $] \sqrt{5}, \sqrt{23}[$
(4) CDI $|-3| \ldots \ldots \ldots .[2, \infty[$
(6) [1] $\sqrt[3]{-1} \cdots \cdots \cdots]-\infty, 1[$
(8) $\sqrt{2}$
$[2,5]$
$95 \cdots \sqrt{5}, \sqrt{23}$
(10) $\sqrt[3]{-125}$
$]-\sqrt{25}, \sqrt{25}]$

4 If $X=[2,5[$ and $Y=[-1,3[$, find using the number line :
1 XUY
$2 \mathrm{X} \cap \mathrm{Y}$
(3) $\mathrm{X}-\mathrm{Y}$
4. $\mathrm{Y}-\mathrm{X}$
(5) X'
(E) Y

5 If $X=]-\infty, 3]$ and $Y=[-4, \infty$ [, find using the number line :
T XUY
z $X \cap Y$
3 $\mathrm{X}-\mathrm{Y}$
(4) Y-X
(5) X̀
6. Ỳ

6 . 1 If $X=[-1,4], Y=[3, \infty[$ and $Z=\{3,4\}$, find the following using the number line :
(1) XUY
(5) $\mathrm{Y} \cap \mathrm{Z}$
2. $\mathrm{X} \cap \mathrm{Y}$
(3) $\mathrm{X}-\mathrm{Y}$
(4) $X-Z$
(7) X
(B) Ỳ

7 Find using the number line :
(1 $[-1,4] \cap[2,5]$
(2) $[-1,4] \cup[2,5]$
4 $]-2,3] \cup] 0,1[$
$5[2,6]-[-1,3[$
$8[-3,0] \cap] 0,2]$
(10 $[-2,4]-[1,2]$
$11[-1,4] \cap[5,7[$
(3) $]-2,3] \cap] 0,1[$
E $[-1,3[-[2,6]$
(9 $[1,2]-[-2,4]$
(12 $[-1,5]-]-1,5[$

8 Find using the number line :
(1) $[-1, \infty[\cup[-3,4]$
(2) $[2, \infty[\cap]-2,3[$
(3) $]-\infty, 3] \cap[-4, \infty[$
(5) $]-\infty, 3]-[-1, \infty[$
[7] $-\infty, 2$ ] -$]-\infty, 0$ ]
(4) $[2, \infty[\cup]-\infty, 3]$
[6] $]-\infty,-3]-[-3,1]$
(8) $]-\infty, 3[\cup] 4, \infty[$

9 Complete the following :
(1 $[3,5] \cup\{3,5\}=$
(3) $[3,5] \cap\{3,5\}=$
(5) $[3,5]-\{3,5\}=$
(7) $\{3,5\}-[3,5]=$
(9) $] 3,5[\cup\{3\}=$
(11) $] 2,5[\cap\{-2,3,4\}=$
(2) $] 3,5[\cup\{3,5\}=$
(4) $] 3,5[\cap\{3,5\}=$
(6) $] 3,5[-\{3,5\}=$
(8) $\{3,5\}-] 3,5[=$
(10) $[3,5]-\{5\}=$
[12] $]-3,5] \cup\{-2,3,4\}=$

10 Complete the following:
(1) $] 1,7[\cup] 3,5[=$
(3) $[3,4[\cup] 3,4]=$
[5] $[3,5]-[3,5[=$
(7 $[2,7]-] 2,7[=$ $\qquad$
(2) $]-3,2]-[0,2]=$
(4) $] 2,5] \cap[2,5[=$
(6) $[3,7]-[4,7]=$
( $8[-2,4] \cap[4,6]=$
$\qquad$
(9) If $\mathrm{X} \cap[2,7]=[3,4[$, then $\mathrm{X}=$
(10) If $x$ is a positive real number, then $x>x^{2}$ when $\left.x \in\right]$ $\qquad$ , .......... [

11 Choose the correct answer from the given ones:
1 (D] $[-3,4]-\{-3,5\}=$
(a) $]-3,4[$
(b) $]-3,4]$
(c) $]-3,5[$
(d) $[-3,5[$

ㅇ 2 If $x \in[-3, \infty[$, then
(a) $x<-3$
(b) $x \leq-3$
(c) $x>-3$
(d) $x \geq-3$

3 If $\mathrm{X}=\{x: x \in \mathbb{R}, 2<x \leq 5\}$, then $[3,4]$ X
(a) $\in$
(b) $\notin$
(c) $\subset$
(d) $\not \subset$

ㅇ $4\{3\} \cap[3,6]=$
(a) $\varnothing$
(b) $\{3\}$
(c) $] 3,6]$
(d) $\{6\}$
o $5\{8,9,10\}-] 8,10[=$
(a) $\varnothing$
(b) $\{8,10\}$
(c) $\{9\}$
(d) $\mathbb{N}$

- 6 The sum of all real numbers in $[-75,75]$ is
(a) -75
(b) 75
(c) 150
(d) zero


## 12 Complete the following :

(1) $\mathbb{R} \cap[-3,3]=$ $\qquad$ (2) $\mathbb{R} \cup]-1,4]=$ $\qquad$ (3) $\mathbb{R}-[-1, \infty[=$
(4) $\mathbb{R}_{-}-[-3,1]=$ $\qquad$ 5] $]-2,5]-\mathbb{R}_{+}=$ $\qquad$ (E) $[-2,2]-\mathbb{R}_{-}=$
(B) $\mathbb{N} \cap[-5,2[=$ $\qquad$
(9) $\mathbb{Z} \cap[-1,3[=$
[7] $]-3,2] \cap \mathbb{Z}_{+}=$ $\qquad$
(10) $\mathbb{R}_{+} \cap[0,5]=$ $\qquad$ (11) $\mathbb{R}_{-} \cap[-3,2]=$
$\qquad$
$\qquad$

13 Choose from column (B) the suitable interval which represents the figure in column (A) :

|  | (A) | (B) |
| :---: | :---: | :---: |
| 1 | $4-$ | $\mathbb{R}-]-3,1]$ |
| 2 |  | $\mathbb{R}-[-3,1[$ |
| 3 |  | $\begin{aligned} & \mathbb{R}-]-3,1[ \\ & {[-3,3[-\{1\}} \end{aligned}$ |
| 4 | $-3$ | $[-3,1[$ |
| 5 | $\leftarrow-3 \quad 1-{ }_{3}^{\circ} \longrightarrow$ | ]-3, 1[ |

## Life Application

Two kinds of food, the first kind needs to be kept in a temperature between -3 and 4 degrees and the other kind needs to be kept in a temperature between 2 and 10 degrees.
What is the temperature needed to keep the two kinds altogether at the same place ?


## For excellent pupils

## 15 Choose the correct answer from the given ones :

## (1) In the opposite figure :

If $X$ is a real number, then $X \in$ $\qquad$

(a) $\mathbb{R}_{-}$
(b) $\mathbb{R}_{+}$
(c) $]-\infty,-1]$
(d) $]-\infty,-1[$
(2) If $x \in[-3,4]$, then $x^{2} \in$ $\qquad$
(a) $[9,16]$
(b) $[0,9]$
(c) $[0,16]$
(d) $[-9,0]$

3 If $x \in[-5,4]$, then $x^{2} \in$
(a) $[0,16]$
(b) $[16,25]$
(c) $[0,25]$
(d) $[-5,0]$
© 4 If $x \in[1,16]$, then $-\sqrt{x} \in$
(a) $[1,4]$
(b) $[-1,4]$
(c) $[-4,-1]$
(d) $[-4,0]$
© 5 If $X \subset \mathbb{R},[2,5]-X=] 2,5[$, then $X=$
(a) $[2,5]$
(b) $\{2,5\}$
(c) $[2,5[$
(d) $] 2,5]$
( 6 If $X \subset \mathbb{R}] 4,7,] \cup X=[1,7]$, then $X=$
(a) $[1,3[$
(b) $[1,3]$
(c) $[1,4[$
(d) $[1,5]$
© $7 \mathrm{If} \mathrm{M} \subset \mathbb{R}, \mathrm{M} \cap[3,8[=[3,8[$, then $\mathrm{M}=$
(a) $] 3,8[$
(b) $] 3,8]$
(c) $[3,9]$
(d) $[3,7]$

B If $]-\infty, \mathrm{k}[\cap[-2,5]=[-2,3[$, then $\mathrm{k}=$
(a) -2
(b) 5
(c) 3
(d) zero
© If $[-1, x] \cap[y, 5]=[2,3]$, then $x^{y}=$
(a) 8
(b) $\frac{1}{5}$
(c) 9
(d) -1

16 If $X \cap Y=[4,7], X \cup Y=[3,7]$ and $X \subset Y$, find $: X, Y$ and $Y-X$

## Accumulative test 1 on lesson 1 - unit 1

1 Choose the correct answer from the given ones :
(1) $\sqrt[3]{2 \frac{10}{27}}=$
(a) $\frac{3}{4}$
(b) $\frac{10}{3}$
(c) $\frac{4}{3}$
(d) $\frac{20}{27}$
(2) $\sqrt[3]{\cdots \cdots \cdots \cdots \cdots}+\sqrt[3]{27}=\sqrt{64}$
(a) 25
(b) -125
(c) 125
(d) 5
(3) If $\sqrt[3]{x}=\frac{1}{4}$, then $x=$
(a) $\frac{1}{2}$
(b) $\frac{1}{16}$
(c) $\frac{1}{64}$
(d) $\frac{1}{12}$
(4) $\sqrt[3]{x^{6}}=\sqrt{\ldots \ldots \ldots \ldots \ldots}$
(a) $x$
(b) $x^{2}$
(c) $x^{3}$
(d) $x^{4}$

2 Complete the following:
(1) $\sqrt[3]{\cdots \cdots \cdots \cdots \cdots \cdots}=-\sqrt{4}$
(2) $\sqrt[3]{125}-\sqrt{25}=$
(3) If $\sqrt[3]{x}=3$, then $\sqrt{x-2}=$
(4) The cube whose volume is $8 \mathrm{~cm}^{3}$., then its edge length $=$ cm .

3 Find the S.S. of each of the following equations in $\mathbb{Q}$ :
(1) $x^{3}+1=$ zero
(2) $8 x^{3}+7=8$

## Accumulative test <br> 2 <br> till lesson 2 - unit 1

1 Choose the correct answer from the given ones :
1 $\sqrt{6} \in$
(a) $\mathbb{N}$
(b) $\mathbb{Q}$
(c) $\stackrel{\mathbb{Q}}{ }$
(d) $\mathbb{Z}$
(2) The irrational number located between 2 and 3 is
(a) $\sqrt{7}$
(b) $\sqrt{10}$
(c) 2.5
(d) $\sqrt{3}$
(3) The nearest integer to $\sqrt[3]{-28}$ is $\qquad$
(a) -4
(b) -30
(c) -3
(d) 3
(4) If $x=\sqrt{2}, y=2$, then which of the following does not represent a rational number ?
(a) $x^{2}+y$
(b) $x+y^{2}$
(c) $\sqrt{x^{2} y}$
(d) $\sqrt{2} x y$

2 Complete the following :
(1) $\sqrt{4}-\sqrt[3]{-8}=$
(2) If $x<\sqrt{7}<x+1, x \in \mathbb{Z}$, then $x=$
(3) If the volume of a cube is $125 \mathrm{~cm}^{3}$., then the area of one of its faces is $\qquad$
(4) The sum of the two square roots of $\frac{25}{16}$ equal

3 [a] Prove that : $\sqrt{5}$ is included between 2.2 and 2.3
[b] Without using the calculator, prove that : $\sqrt[3]{15}$ is included between 2.4 and 2.5

## Accumulative test 3 till lesson 3 - unit 1

1 Choose the correct answer from the given ones:
(1) $\mathbb{R}_{+} \cup \mathbb{R}_{-}=$
(a) $\mathbb{R}_{+}$
(b) $\mathbb{R}_{-}$
(c) $\mathbb{R}^{*}$
(d) $\mathbb{R}$
(2) The irrational number located between 4 and 5 is
(a) $\sqrt{8}$
(b) $4 \sqrt{2}$
(c) $3 \sqrt{2}$
(d) $\sqrt{10}$
(3) $\sqrt[3]{9}$ $\sqrt{4}$
(a) $>$
(b) $<$
(c) $=$
(d) $\leq$
(4) Which of the following rational numbers is located between $\frac{1}{5}$ and $\frac{2}{5}$ ?
(a) $\frac{2}{10}$
(b) $\frac{1}{10}$
(c) 0.3
(d) -0.3

5 If $\frac{1}{\mathrm{a}}, \frac{\mathrm{a}}{\sqrt{5}}$ are two real numbers included between zero and 1 , then a can equal
(a) -2
(b) 1
(c) $\sqrt{5}$
(d) 2

2 Complete the following :
$1 \mathbb{Q} \cap \stackrel{\mathbb{Q}}{ }=$ $\qquad$
(2) The S.S. of $X^{2}+4=$ zero in $\mathbb{R}$ is $\qquad$
(3) $\sqrt{4}-\sqrt[3]{-8}=$
(4) $\mathbb{R}^{-} \cap \mathbb{R}^{+}=$ $\qquad$
(5) The S.S. of $X^{3}-8=$ zero in $\mathbb{R}$ is $\qquad$

## Accumulative test 4 till lesson 4 - unit 1

1 Choose the correct answer from the given ones :
(1) $\{$ The multiplicative identity element, 3$\} \ldots \ldots \ldots \ldots \ldots \ldots$
(a) $\in$
(b) $\notin$
(c) $\subset$
(d) $\not \subset$
(2) $\mathbb{R}=$
(a) $\mathbb{R}_{+} \cup \mathbb{R}_{-}$
(b) $]-\infty, \infty[$
(c) $]-\infty, 0]$
(d) $[0, \infty[$
(3) If $\sqrt{4}-\sqrt[3]{x}=5$, then $x=$
(a) 125
(b) 27
(c) -27
(d) 3
(4) If $X$ is a negative number, then which of the following numbers is positive?
(a) $x^{3}$
(b) $2 x$
(c) $x^{2}$
(d) $\frac{x}{2}$

## 2 Complete the following :

(1) $[3,5]-] 3,5[=$
(2) $] 1, \infty[\cup]-\infty, 1[=$
(3) The sum of the real numbers in the interval ]-4, 4] equals $\qquad$
(4) $\mathbb{Q} \cup \mathbb{Q}=$
3. If $\mathrm{X}=[2,5], \mathrm{Y}=[0,3]$
(1) Write X using the description method. Represent X, Y on the number line.
(3) Find : $\mathrm{X}-\mathrm{Y}$ as an interval by using the number line. Is $\sqrt{29} \in \mathrm{X}-\mathrm{Y}$ ?

4 If $\mathrm{X}=[-1,4], Y=[3, \infty[$ , find using the number line each of : $\mathrm{X} \cup \mathrm{Y}, \mathrm{X} \cap \mathrm{Y}, \mathrm{Y}-\mathrm{X}$

## Medians of triangle

## 1 Complete the following :

(1) In $\triangle \mathrm{ABC}$, if D is the midpoint of $\overline{\mathrm{BC}}$, then $\overline{\mathrm{AD}}$ is called
(2) The number of medians of the triangle is $\qquad$
3 The medians of the triangle intersect at $\qquad$
4 The point of concurrence of the medians of the triangle divides each median in the ratio
$\qquad$
$\qquad$ from its base.

5 The point of concurrence of the medians of the triangle divides each median in the ratio .......... : $\qquad$ from the vertex.
[6 The point of intersection of the medians of the triangle divides each of them in the ratio 2 : $\qquad$ from the base.

7 The point of intersection of medians of the triangle divides each of them in the ratio .......... : 8 from the vertex.

## 2 Choose the correct answer from those given :

1 The number of medians of the obtuse-angled triangle is
(a) zero
(b) 1
(c) 2
(d) 3
(2) If $\overline{Y D}$ is a median in $\triangle X Y Z, M$ is the point of intersection of medians , then MD = $\qquad$ YM
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{2}{3}$
(d) $\frac{3}{2}$

- 3 If M is the point of intersection of medians of $\triangle \mathrm{ABC}, \overline{\mathrm{BD}}$ is a median , then $\mathrm{BD}: \mathrm{MD}=$ $\qquad$
(a) $2: 3$
(b) $1: 3$
(c) $3: 2$
(d) $3: 1$

4 If $\overline{\mathrm{AD}}$ is a median in $\triangle \mathrm{ABC}, \mathrm{M}$ is the point of intersection of medians , then $\mathrm{AD}=$ $\qquad$ AM
(a) $\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) $\frac{3}{2}$
-5 If $\overline{\mathrm{AD}}$ is a median in $\triangle \mathrm{ABC}$ of length 9 cm ., M is the point of intersection of medians , then $\mathrm{DM}=$ cm .
(a) 3
(b) 4.5
(c) 6
(d) 9
(B) If $M$ is the point of intersection of the medians of $\triangle A B C, \overline{A D}$ is a median of length 6 cm ., then $\mathrm{AM}=$ $\qquad$ cm .
(a) 1
(b) 2
(c) 3
(d) 4

If $M$ is the point of intersection of the medians of $\triangle A B C, D$ is the midpoint of $\overline{B C}$ , then $\mathrm{AD}=$
(a) 2 AM
(b) $\frac{2}{3} \mathrm{MD}$
(c) $\frac{3}{2} \mathrm{AM}$
(d) 4 MD

3 Using data given for each of the following figures, find the required below each figure :

1


| X |
| :---: |
| Y |
| 3 | $\ldots \ldots \ldots . . \mathrm{cm}$. and

$\mathrm{YD}=$ $\qquad$ cm .


If $\mathrm{BC}=12 \mathrm{~cm} ., \mathrm{BE}=9 \mathrm{~cm}$.
and $\mathrm{MC}=8 \mathrm{~cm}$.
, then $\mathrm{DE}=$ $\qquad$ cm.
$\mathrm{ME}=$ $\qquad$ cm. and
$\mathrm{MD}=$ $\qquad$ cm .


MA $=$ $\qquad$ cm. ,
$\mathrm{MD}=$ $\qquad$ cm.
$\mathrm{ME}=$ AE
and $\mathrm{MC}=$ $\qquad$

## (4) ID



If $\mathrm{LZ}=15 \mathrm{~cm} ., Y M=18 \mathrm{~cm}$.
and $X Y=20 \mathrm{~cm}$,
then $\mathrm{NL}=$ $\qquad$ cm.
$\mathrm{NY}=$ $\qquad$ cm . and the perimeter of
$\Delta N L Y=$ $\qquad$ cm .

## 4 In the opposite figure ：

ABC is a triangle in which D is the midpoint of $\overline{\mathrm{BC}}$
， E is the midpoint of $\overline{\mathrm{AC}}$ and $\overline{\mathrm{AD}} \cap \overline{\mathrm{BE}}=\{\mathrm{M}\}$
If $\mathrm{AD}=6 \mathrm{~cm}$ ．and $\mathrm{AB}=\mathrm{BE}=9 \mathrm{~cm}$ ．


Calculate ：The perimeter of $\triangle \mathrm{MDE}$
$\ll 9.5 \mathrm{~cm} . »$

## 5 In the opposite figure ：

If D is the midpoint of $\overline{\mathrm{AB}}, \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BE}} \cap \overline{\mathrm{DC}}=\{\mathrm{M}\}, \mathrm{DE}=4 \mathrm{~cm}$ ．
$\mathrm{DM}=3 \mathrm{~cm}$ ．and $\mathrm{BE}=6 \mathrm{~cm}$ ．
Find ：The perimeter of $\triangle B M C$

« 18 cm ．»

6 In the opposite figure ：
ABC is a triangle， X is the midpoint of $\overline{\mathrm{AB}}$ ，
Y is the midpoint of $\overline{\mathrm{BC}}, \mathrm{XY}=5 \mathrm{~cm}$ ．and $\overline{\mathrm{XC}} \cap \overline{\mathrm{AY}}=\{\mathrm{M}\}$ where $C M=8 \mathrm{~cm}$ ．，$Y M=3 \mathrm{~cm}$ ．Find ：


1 The perimeter of $\triangle \mathrm{MXY}$
（2）The perimeter of $\triangle \mathrm{MAC}$
《 $12 \mathrm{~cm}, 24 \mathrm{~cm}$ ．»
7 In $\triangle \mathrm{ABC}, \mathrm{BC}=8 \mathrm{~cm}$ ．, F and E are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively and $\overline{\mathrm{BE}} \cap \overline{\mathrm{CF}}=\{\mathrm{M}\}$ If $\mathrm{BM}=4 \mathrm{~cm}$ ．and $\mathrm{CM}=6 \mathrm{~cm}$ ．Find ：The perimeter of $\triangle \mathrm{MFE}$

8 In the opposite figure ：
$\overline{\mathrm{AF}}$ and $\overline{\mathrm{CD}}$ are two medians in $\triangle \mathrm{ABC}$ ，
$\overline{\mathrm{AF}} \cap \overline{\mathrm{CD}}=\{\mathrm{M}\}$


If the perimeter of $\triangle \mathrm{AMC}=36 \mathrm{~cm}$ ．
« 18 cm ．»
9 In the opposite figure ：
M is the point of concurrence of the medians of $\triangle \mathrm{ABC}, \overline{\mathrm{AM}} \perp \overline{\mathrm{CD}}$
， $\mathrm{MC}=6 \mathrm{~cm} ., \mathrm{AD}=5 \mathrm{~cm}$ ．


Find ：The length of $\overline{\mathrm{ME}}$
«2 cm．»
10 In the opposite figure ：
ABCD is a parallelogram，its diagonals intersect at M ， $\mathrm{E} \in \overline{\mathrm{DM}}$ where $\mathrm{DE}=2 \mathrm{EM}$ ，draw $\overrightarrow{\mathrm{CE}}$ to cut $\overline{\mathrm{AD}}$ at F
Prove that ： $\mathrm{AF}=\mathrm{FD}$

 the triangle ABC
« 6 cm . "
(2) If $\mathrm{BF}=4 \mathrm{~cm}$., find : the length of $\overline{\mathrm{AM}}$

12 In the opposite figure :
ABC is a triangle in which D is the midpoint of $\overline{\mathrm{BC}}$,
$\mathrm{AB}=\mathrm{AC}, \mathrm{M} \in \overline{\mathrm{AD}}$ where $\mathrm{AM}=\frac{2}{3} \mathrm{AD}$ and
$\overrightarrow{\mathrm{CM}} \cap \overline{\mathrm{AB}}=\{\mathrm{F}\}$


Prove that: $\mathrm{BF}=\frac{1}{2} \mathrm{AC}$
13 CD ABC is a triangle where point D is the midpoint of $\overline{\mathrm{BC}}$ and point $\mathrm{M} \in \overline{\mathrm{AD}}, \mathrm{AM}=2 \mathrm{MD}$ Draw $\overrightarrow{\mathrm{CM}}$ to intersect $\overline{\mathrm{AB}}$ at point E If $\mathrm{EC}=12 \mathrm{~cm}$, then find : the length of $\overline{\mathrm{EM}} « 4 \mathrm{~cm}$. *

14 In the opposite figure :
$\mathrm{M} \in \overline{\mathrm{CD}}, \mathrm{M}$ is the point of concurrence of the medians of $\triangle \mathrm{ABC}, \mathrm{N} \in \overline{\mathrm{DM}}$ where $\mathrm{ND}=(\chi-1) \mathrm{cm}$.
, $\mathrm{MN}=(x+3) \mathrm{cm}$., $\overrightarrow{\mathrm{AN}}$ is drawn to intersect $\overline{\mathrm{BM}}$ at E
 which is the midpoint of $\overline{\mathrm{BM}}$
Find : The length of $\overline{\mathrm{MC}}$
« 24 cm .»
15 ABCD is a parallelogram whose diagonals intersect at $\mathrm{M}, \mathrm{E}$ is the midpoint of $\overline{\mathrm{BC}}$, $\overline{\mathrm{DE}}$ intersects $\overline{\mathrm{AC}}$ at F
Prove that : $1 \overrightarrow{\mathrm{BF}}$ bisects $\overline{\mathrm{CD}}$
(2) $\mathrm{CF}=\frac{1}{3} \mathrm{AC}$

## For excellent pupils

16 In the opposite figure :
$\overline{\mathrm{AD}}$ and $\overline{\mathrm{BE}}$ are medians in the triangle ABC intersecting at M , $\overrightarrow{\mathrm{CM}} \cap \overline{\mathrm{AB}}=\{\mathrm{F}\}$, if N is the midpoint of $\overline{\mathrm{MB}}$

Prove that : The figure FNDM is a parallelogram.


## 17 In the opposite figure :

ABC is a triangle in which D is the midpoint of $\overline{\mathrm{BC}}$
, $\mathrm{M} \in \overline{\mathrm{AD}}$ where $\mathrm{AM}=2 \mathrm{MD}$
, $\overrightarrow{\mathrm{BM}} \cap \overrightarrow{\mathrm{AC}}=\{\mathrm{E}\}$
, $\mathrm{ME}=2 \mathrm{~cm}$., draw $\overrightarrow{\mathrm{DF}} / / \overline{\mathrm{BE}}$ and cut $\overline{\mathrm{AC}}$ at F


Find : The length of $\overline{\mathrm{DF}}$
« 3 cm .»

18 In the opposite figure :
ABC is a triangle in which D is the midpoint of $\overline{\mathrm{BC}}$
and E is the midpoint of $\overline{\mathrm{BD}}$, draw $\overrightarrow{\mathrm{DF}} / / \overline{\mathrm{AC}}$
and cut $\overline{\mathrm{AE}}$ at M and $\overline{\mathrm{AB}}$ at F


Prove that: $\mathrm{DM}=\frac{1}{3} \mathrm{AC}$
19 ABC is a triangle, D is the midpoint of $\overline{\mathrm{AB}}$ and E is the midpoint of $\overline{\mathrm{AC}}$
If $\overline{\mathrm{CD}} \cap \overline{\mathrm{BE}}=\{\mathrm{M}\}$ Draw $\overrightarrow{\mathrm{AM}}$ to intersect $\overline{\mathrm{BC}}$ at F
Prove that : The figure DBFE is a parallelogram.



## 1 Complete the following :

1 The number of medians in the right-angled triangle is
(2) The length of the median from the vertex of the right angle in the right-angled triangle equals $\qquad$
3 If the length of the median drawn from a vertex of a triangle equals half the length of the opposite side to this vertex, then the angle at this vertex is $\qquad$
(4) The length of the side opposite to the angle of measure $30^{\circ}$ in the right-angled triangle equals $\qquad$
5 The length of the hypotenuse in thirty and sixty triangle equals $\qquad$ the length of the side opposite to the angle whose measure is $30^{\circ}$
(6) The length of the hypotenuse in the right-angled triangle equals ......... the length of the median drawn from the vertex of the right angle.

2 Using data given for each of the following figures, find the required below each figure :
(1)

$\mathrm{AC}=$ $\qquad$ cm .
(2) $C O$


XZ $=$ $\qquad$

3

$\mathrm{AC}=$ $\qquad$

4 (Id

$\mathrm{AC}=$ $\qquad$ cm. ,
$\mathrm{BD}=$ $\qquad$ cm.,
$\mathrm{MD}=$ BD and $\mathrm{MD}=$ $\qquad$

5

$\mathrm{BD}=$ $\qquad$ cm.,
$\mathrm{AB}=$ $\qquad$ cm . and the perimeter of $\triangle \mathrm{ABD}=$ $\qquad$ cm .
6) 19

$\mathrm{DF}=$ $\qquad$ cm. ,
$\mathrm{DE}=$ $\qquad$ cm., $\mathrm{FE}=$ $\qquad$ cm . and the perimeter of $\Delta \mathrm{DEF}=$ $\qquad$ cm .

## 3 Choose the correct answer from those given :

1 In the right-angled triangle, the ratio between the length of the median drawn from the vertex of the right angle and the length of the hypotenuse is $\qquad$
(a) $2: 1$
(b) $1: 2$
(c) $2: 3$
(d) $3: 2$

- 2 In the thirty-sixty triangle, the ratio between the length of the hypotenuse and the length of the side opposite to the angle of measure $30^{\circ}$ is $\qquad$
(a) $1: 2$
(b) $2: 1$
(c) $1: 1$
(d) $1: 3$
(3) In the thirty-sixty triangle, the ratio between the length of the median drawn from the vertex of the right angle and the length of the side opposite to the angle of measure $30^{\circ}$ is $\qquad$
(a) $1: 2$
(b) $2: 1$
(c) $1: 1$
(d) $2: 3$
(4) ABC is a right-angled triangle at $\mathrm{B}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{AC}}$, then $\mathrm{BD}=$ $\qquad$
(a) $\frac{1}{2} \mathrm{AC}$
(b) AC
(c) $\frac{1}{2} \mathrm{BC}$
(d) AB
(5) ABC is a triangle in which $\mathrm{m}(\angle \mathrm{A})=90^{\circ}, \mathrm{AC}=\frac{1}{2} \mathrm{BC}$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) $30^{\circ}$
(b) $60^{\circ}$
(c) $90^{\circ}$
(d) $120^{\circ}$

B In $\triangle \mathrm{ABC}, \mathrm{m}(\angle \mathrm{B})=90^{\circ}$, if $2 \mathrm{AB}-\mathrm{AC}=0$, then $\mathrm{m}(\angle \mathrm{C})=$ $\qquad$
(a) $30^{\circ}$
(b) $60^{\circ}$
(c) $90^{\circ}$
(d) $120^{\circ}$

## 4 In the opposite figure :

$$
\begin{aligned}
& \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ADC})=90^{\circ}, \\
& \mathrm{m}(\angle \mathrm{ACB})=30^{\circ} \text { and } \\
& \mathrm{E} \text { is the midpoint of } \overline{\mathrm{AC}} \\
& \text { Prove that }: \mathrm{AB}=\mathrm{DE}
\end{aligned}
$$



## 5 In the opposite figure :

$m(\angle X Y Z)=90^{\circ}, D$ is the midpoint of $\overline{\mathrm{XL}}$,
E is the midpoint of $\overline{\mathrm{ZL}}$ and
M is the midpoint of $\overline{\mathrm{XZ}}$
Prove that : $\mathrm{DE}=\mathrm{YM}$


## 6 In the opposite figure :

ABCD is a quadrilateral in which $\mathrm{m}(\angle \mathrm{B})=90^{\circ}$,
E is the midpoint of $\overline{\mathrm{AD}}, \mathrm{F}$ is the midpoint of $\overline{\mathrm{CD}}$, $\mathrm{m}(\angle \mathrm{ACB})=30^{\circ}$ and $\mathrm{EF}=4 \mathrm{~cm}$.
Find by proof : The length of $\overline{\mathrm{AB}}$ « 4 cm , »


7 In the opposite figure :
$\mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{CBE})=90^{\circ}$
, $\mathrm{m}(\angle \mathrm{BEC})=30^{\circ}$
, D and F are the midpoints
of $\overline{\mathrm{BC}}$ and $\overline{\mathrm{CE}}$ respectively and $\mathrm{AD}=3 \mathrm{~cm}$.
Find : The length of $\overline{\mathrm{BF}}$


8 In the opposite figure :
ABC is a right-angled triangle at $\mathrm{B}, \mathrm{m}(\angle \mathrm{ACB})=60^{\circ}$,
E is the midpoint of $\overline{\mathrm{AC}}$ and
$\mathrm{DE}=\mathrm{BC}$
Prove that : $\mathrm{m}(\angle \mathrm{ADC})=90^{\circ}$


9 In the opposite figure :
$A B C$ is a right-angled triangle at $B$,
$\mathrm{m}(\angle \mathrm{ACB})=30^{\circ}, \mathrm{AB}=5 \mathrm{~cm}$. and
E is the midpoint of $\overline{\mathrm{AC}}$
If $\mathrm{DE}=5 \mathrm{~cm}$.,
prove that : $\mathrm{m}(\angle \mathrm{ADC})=90^{\circ}$


10 In the opposite figure :
ABD is a triangle, M is the midpoint of $\overline{\mathrm{BD}}$,
E is the midpoint of $\overline{\mathrm{BC}}$,
$\mathrm{F} \in \overline{\mathrm{CD}}, \overline{\mathrm{EF}} / / \overline{\mathrm{BD}}$ and $\mathrm{AM}=\mathrm{EF}$
Prove that : $\mathrm{m}(\angle \mathrm{BAD})=90^{\circ}$


## 11 In the opposite figure ：

ABC is a triangle in which $\mathrm{m}(\angle \mathrm{B})=33^{\circ}$
， $\mathrm{m}(\angle \mathrm{C})=90^{\circ}, \mathrm{D} \in \overline{\mathrm{BC}}$ where $\mathrm{CD}=4 \mathrm{~cm}$ ．
， $\mathrm{m}(\angle \mathrm{BAD})=27^{\circ}$
Find ：The length of $\overline{\mathrm{AD}}$
$\ll 8 \mathrm{~cm} . 》$


12 In the opposite figure ：
ADB is a right－angled triangle at D ，
ACB is a right－angled triangle at C and E is the midpoint of $\overline{\mathrm{AB}}$
Prove that：$\triangle$ CED is an isosceles triangle．


13 In the opposite figure ：
$\mathrm{m}(\angle \mathrm{YLE})=90^{\circ}, \mathrm{m}(\angle \mathrm{E})=30^{\circ}, \mathrm{YE}=10 \mathrm{~cm} .$,
$\mathrm{m}(\angle X Y Z)=90^{\circ}$ and
$L$ is the midpoint of $\overline{X Z}$
Find by proof ：The length of $\overline{X Z}$ $* 10 \mathrm{~cm} . »$


14 In the opposite figure ：
$A B C$ is a right－angled triangle at $B, D$ is the midpoint of $\overline{\mathrm{AC}}, \overline{\mathrm{DE}} \perp \overline{\mathrm{BC}}, \mathrm{AB}=7 \mathrm{~cm}$ ．and $\mathrm{m}(\angle \mathrm{C})=30^{\circ}$
Find the length of each of ：$\overline{\mathrm{BD}}$ and $\overline{\mathrm{DE}}$


《 $7 \mathrm{~cm} ., 3.5 \mathrm{~cm} . »$

## 15 In the opposite figure ：

ABC is a triangle in which $\mathrm{m}(\angle \mathrm{ABC})=90^{\circ}, \mathrm{m}(\angle \mathrm{C})=30^{\circ}$,
$\mathrm{X}, \mathrm{Y}$ and Z are the midpoints of $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{XY}}$ respectively and $\mathrm{AC}=8 \mathrm{~cm}$ ．

« $4 \mathrm{~cm} ., 4 \mathrm{~cm}, 2 \mathrm{~cm}$ ．

## 16 In the opposite figure ：

ABC is a right－angled triangle at A
， M is the point of concurrence of its medians
， $\mathrm{E} \in \overline{\mathrm{DC}}$ where $\overline{\mathrm{ME}} \perp \overline{\mathrm{DC}}, \mathrm{DE}=3 \mathrm{~cm}$ ．

and $\mathrm{ME}=4 \mathrm{~cm}$ ．
Find ：The length of $\overline{\mathrm{BC}}$

## 17 In the opposite figure :

$\mathrm{m}(\angle \mathrm{BAC})=90^{\circ}, \mathrm{AB}=12 \mathrm{~cm} ., \mathrm{AC}=9 \mathrm{~cm}$.
$\overline{\mathrm{AD}}$ is a median of $\triangle \mathrm{ABC}$ and M is the point
of concurrence of the medians of $\triangle \mathrm{ABC}$


Find : The length of $\overline{\mathrm{AM}}$
« 5 cm .»

## 18 In the opposite figure :

ABCD is a parallelogram in which
$\mathrm{m}(\angle \mathrm{A})=60^{\circ}, \overline{\mathrm{DE}} \perp \overline{\mathrm{BC}}$
, $\mathrm{AD}=12 \mathrm{~cm}$. and $\mathrm{EC}=4 \mathrm{~cm}$.


Find : The perimeter of the parallelogram ABCD

19 In the opposite figure :
ABCD is a square, $\mathrm{E} \in \overline{\mathrm{BC}}$ where $\mathrm{m}(\angle \mathrm{BAE})=30^{\circ}$ and $\overline{\mathrm{DF}} \perp \overline{\mathrm{AE}}$ If $\mathrm{AF}=4 \mathrm{~cm}$.

Calculate: The area of the square ABCD


## 20 In the opposite figure :

ABCD is a rectangle, $\mathrm{E} \in \overline{\mathrm{DC}}$
where $\mathrm{m}(\angle \mathrm{CBE})=30^{\circ}$

and $\mathrm{m}(\angle \mathrm{AEB})=90^{\circ}$
Prove that : $C E=\frac{1}{4} A B$

## 21 In the opposite figure :

$A B C$ is a right-angled triangle at $B$,
$\mathrm{m}(\angle \mathrm{A})=30^{\circ}$,
$\mathrm{D} \in \overline{\mathrm{AC}}$ such that $\overline{\mathrm{BD}} \perp \overline{\mathrm{AC}}$


If $\mathrm{BC}=8 \mathrm{~cm}$.
Find : The length of $\overline{\mathrm{AD}}$

## 22 In the opposite figure :

ABC is a right-angled triangle at C in which $\mathrm{m}(\angle \mathrm{B})=30^{\circ}$
, $\mathrm{E}, \mathrm{O}, \mathrm{X}, \mathrm{Y}$ are the midpoints of $\overline{\mathrm{BC}}, \overline{\mathrm{AC}}$
, $\overline{\mathrm{DE}}, \overline{\mathrm{DO}}$ respectively


Prove that: $\mathrm{XY}=\frac{1}{2} \mathrm{AC}$ $\qquad$
23 ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}$ and $\overrightarrow{\mathrm{AD}}$ is drawn to be perpendicular to $\overline{\mathrm{BC}}$ where $\overrightarrow{\mathrm{AD}} \cap \overline{\mathrm{BC}}=\{\mathrm{D}\}$ If E and F are the two midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively, prove that : $\mathrm{DE}+\mathrm{DF}=\mathrm{AB}$

## 24 In the opposite figure :

ABC is a right-angled triangle at A
, E is the midpoint of $\overline{\mathrm{AB}}, \mathrm{O} \in \overline{\mathrm{BC}}$
where $\overline{\mathrm{EO}} / / \overline{\mathrm{AC}}, \mathrm{D} \in \overline{\mathrm{BO}}$ where $\mathrm{BD}=4 \mathrm{~cm}$. , $\mathrm{DC}=12 \mathrm{~cm}$.


Find : The length of $\overline{\mathrm{DE}}$
« 4 cm .»

## Life Application

25 The opposite figure is a sketch for three towns A, B and C such that the distance between the towns A and C is 40 km . and the distance between the towns B and C is 30 km . If we want to build a service station lying on the main road at the half-way between the towns A and B, also we want to build
 a road linking this station to the town $C$ , then how long will this road be ?
« 25 km .*

## For excellent pupils

26 In the opposite figure :
$M$ is the point of concurrence of the medians of $\triangle A B C$
, $\mathrm{AM}=6 \mathrm{~cm}, \mathrm{BM}=10 \mathrm{~cm}$.
, $\mathrm{m}(\angle \mathrm{AMC})=90^{\circ}$


Find by proof : 1 The length of $\overline{\mathrm{AC}}$
(2) The length of $\overline{\mathrm{MC}}$
$« 10 \mathrm{~cm} ., 8 \mathrm{~cm}$.
27 ABCD is a parallelogram, X is an interior point in it such that $\overrightarrow{\mathrm{DX}}$ bisects $\angle \mathrm{ADC}, \overrightarrow{\mathrm{CX}}$ bisects $\angle \mathrm{DCB}$, if the point Y is the midpoint of $\overline{\mathrm{DC}}$
, prove that : $\mathrm{XY}=\mathrm{YC}$


1 In each of the following, find the value of the symbol used for the measure of the angle :


## 2 Complete the following:

- 1
1 The base angles of the isosceles triangle are
(2) The measure of each angle in the equilateral triangle equals .
- 3 In $\triangle \mathrm{DEF}$, if $\mathrm{DE}=\mathrm{DF}$, then $\mathrm{m}(\angle \mathrm{E})=\mathrm{m}(\angle \ldots \ldots \ldots)$
- 4 In the isosceles triangle, if the measure of one of the two base angles is $65^{\circ}$, then the measure of its vertex angle equals


## 

- 5) In the isosceles triangle, if the measure of the vertex angle equals $40^{\circ}$, then the measure of one of the two base angles equals $\qquad$ $\therefore$

6. An isosceles triangle , the measure of its vertex angle is $80^{\circ}$, if the measure of one of its base angles is $\left(x+30^{\circ}\right)$, then $x=$

## 3 Choose the correct answer from those given :

1 In $\triangle \mathrm{XYZ}$, if $\mathrm{XY}=\mathrm{YZ}=\mathrm{XZ}$, then $\mathrm{m}(\angle \mathrm{X})=$ $\qquad$
(a) $30^{\circ}$
(b) $60^{\circ}$
(c) $90^{\circ}$
(d) $180^{\circ}$

2 The measure of the exterior angle of the equilateral triangle equals $\qquad$
(a) $60^{\circ}$
(b) $90^{\circ}$
(c) $120^{\circ}$
(d) $180^{\circ}$
3) LMN is a triangle in which $\mathrm{LM}=\mathrm{MN}, \mathrm{m}(\angle \mathrm{M})=70^{\circ}, \mathrm{m}(\angle \mathrm{N})=$ $\qquad$
(a) $20^{\circ}$
(b) $35^{\circ}$
(c) $55^{\circ}$
(d) $70^{\circ}$
4. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{C})=65^{\circ}$, then $\mathrm{m}(\angle \mathrm{A})=$ $\qquad$
(a) $30^{\circ}$
(b) $50^{\circ}$
(c) $55^{\circ}$
(d) $130^{\circ}$

5 In $\triangle \mathrm{XYZ}, \mathrm{ZY}=\mathrm{ZX}, \mathrm{m}(\angle \mathrm{Z})=120^{\circ}$, then $\mathrm{m}(\angle \mathrm{X})=$ $\qquad$
(a) $30^{\circ}$
(b) $60^{\circ}$
(c) $90^{\circ}$
(d) $120^{\circ}$
(E) If $\triangle A B C$ is right-angled at $A$ and $A B=A C$, then $m(\angle B)=$ $\qquad$
(a) $30^{\circ}$
(b) $45^{\circ}$
(c) $60^{\circ}$
(d) $90^{\circ}$
(7) XYZ is an isosceles triangle in which, $\mathrm{m}(\angle \mathrm{Y})=100^{\circ}$, then $\mathrm{m}(\angle \mathrm{Z})=$ $\qquad$
(a) $100^{\circ}$
(b) $80^{\circ}$
(c) $50^{\circ}$
(d) $40^{\circ}$

8 If the measure of one of the two base angles in the isosceles triangle is $30^{\circ}$, then the triangle is $\qquad$
(a) obtuse-angled.
(b) acute-angled.
(c) right-angled,
(d) equilateral.
9. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{B})=6 x^{\circ}, \mathrm{m}(\angle \mathrm{A})=3 x^{\circ}$, then $X=$ $\qquad$
(a) $30^{\circ}$
(b) $12^{\circ}$
(c) $60^{\circ}$
(d) $90^{\circ}$
(10) In $\triangle \mathrm{XYZ}$, if $\mathrm{XY}=\mathrm{XZ}$, then the exterior angle at the vertex Z is
(a) acute.
(b) obtuse.
(c) right.
(d) reflex.

## 4 In the opposite figure :

ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$,
$\mathrm{m}(\angle \mathrm{A})=40^{\circ}$ and $\mathrm{D} \in \overrightarrow{\mathrm{CB}}, \mathrm{E} \in \overrightarrow{\mathrm{BC}}$
1 Find :m ( $\angle \mathrm{ABC}$ )

« $70^{\circ}$ »


《 $75^{\circ}$ »

6 In the opposite figure :
$\mathrm{m}(\angle \mathrm{B})=40^{\circ}, \mathrm{m}(\angle \mathrm{BAC})=30^{\circ}$
and $A C=A D$
Find by proof :
$1 \mathrm{~m}(\angle \mathrm{D})$
(2) $\mathrm{m}(\angle \mathrm{CAD})$

« $70^{\circ}, 40^{\circ}$ »

7 In the opposite figure :
$\mathrm{AD}=\mathrm{DC}=\mathrm{AC}, \mathrm{AB}=\mathrm{BC}$
and $\mathrm{m}(\angle \mathrm{ABC})=40^{\circ}$
Find: $m(\angle B A D)$

## 8 In the opposite figure :

$\mathrm{AB}=\mathrm{AD}, \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$,
$\mathrm{m}(\angle \mathrm{BAD})=120^{\circ}$ and $\mathrm{m}(\angle \mathrm{BDC})=65^{\circ}$
Find :

$1 \mathrm{~m}(\angle \mathrm{ADB})$
(2) $\mathrm{m}(\angle \mathrm{C})$

《 $30^{\circ}, 85^{\circ}$ »

## 9 In the opposite figure :

ABC is a triangle in which $\mathrm{AC}=\mathrm{BC}$,
$\overrightarrow{\mathrm{AD}} / / \overrightarrow{\mathrm{BC}}$ and $\mathrm{m}(\angle \mathrm{DAC})=30^{\circ}$
Find: The measures of the angles of $\triangle \mathrm{ABC}$

$« 30^{\circ}, 75^{\circ}, 75^{\circ}$ »

10 In the opposite figure :
$\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{BAC})=80^{\circ}$
and $\mathrm{CE}=\mathrm{ED}=\mathrm{CD}$
Find by proof : m ( $\angle \mathrm{BCD}$ )


11 In the opposite figure :
$\mathrm{AB}=\mathrm{BC}, \mathrm{AD}=\mathrm{CD}, \mathrm{m}(\angle \mathrm{BAD})=114^{\circ}$
and $m(\angle B)=80^{\circ}$
Find : $m(\angle \mathrm{ADC})$


## 12 In the opposite figure :

$\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{BAC})=48^{\circ}, \overrightarrow{\mathrm{CD}}$ bisects $\angle \mathrm{BCA}$ and intersects $\overline{\mathrm{AB}}$ at D

Find :
(1) $\mathrm{m}(\angle \mathrm{B})$
(2) $\mathrm{m}(\angle \mathrm{BCD})$

« $66^{\circ}, 33^{\circ}$ »

## 13 In the opposite figure :

ABC is an equilateral triangle and the two bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ intersect together at D

Find : m ( $\angle \mathrm{BDC})$

« $120^{\circ}$ "

## 14 In the opposite figure :

ABC is an equilateral triangle, $\mathrm{DB}=\mathrm{DC}$
and $\mathrm{m}(\angle \mathrm{BDC})=100^{\circ}$
Find by proof : $\mathrm{m}(\angle \mathrm{ABD})$

$« 20^{\circ}$ »

## 15 In the opposite figure :

ABC is an equilateral triangle.
$D \in \overrightarrow{\mathrm{BC}}$ such that $\mathrm{BC}=\mathrm{CD}$
Prove that : $\overline{\mathrm{BA}} \perp \overline{\mathrm{AD}}$


## 16 In the opposite figure :

ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}, \mathrm{D} \in \overline{\mathrm{BC}}$ and $E \in \overline{\mathrm{BC}}$, such that $\mathrm{BD}=\mathrm{EC}$
Prove that : $1 \triangle \mathrm{ADE}$ is an isosceles triangle.
(2) $\angle \mathrm{AED} \equiv \angle \mathrm{ADE}$


17 In the opposite figure :
E is the midpoint of $\overline{\mathrm{AB}}, \mathrm{AD}=\mathrm{BC}, \mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{B})$ and $m(\angle D E C)=40^{\circ}$

Find : m ( $\angle \mathrm{EDC}$ )


## 18 In the opposite figure :

$Z \in \overline{L Y}, X Z=Y Z, m(\angle L Z X)=130^{\circ}$ and $\overrightarrow{\mathrm{LM}} / / \overrightarrow{\mathrm{XY}}$

Find: m ( $\angle \mathrm{MLY}$ )


19 In the opposite figure :
$\mathrm{A} \in \overrightarrow{\mathrm{BD}}, \mathrm{AB}=\mathrm{AC}$ and $\overrightarrow{\mathrm{AE}} / / \overrightarrow{\mathrm{BC}}$

## Prove that :

$\overrightarrow{\mathrm{AE}}$ bisects $\angle \mathrm{DAC}$


20 In the opposite figure :
$\mathrm{AB}=\mathrm{BC}$ and $\overrightarrow{\mathrm{BE}}$ bisects $\angle \mathrm{CBD}$
Prove that : $\overrightarrow{\mathrm{BE}} / / \overrightarrow{\mathrm{AC}}$


## 21 In the opposite figure :

ABCD is a parallelogram, $\mathrm{E} \in \overline{\mathrm{BC}}$,
where $\mathrm{AE}=\mathrm{AD}, \mathrm{DE}=\mathrm{DC}$ and $\mathrm{m}(\angle \mathrm{EDC})=40^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{AED})$
(2) $\mathrm{m}(\angle \mathrm{BAE})$

$« 70^{\circ}, 30^{\circ}$ »

22 In the opposite figure :
ABC is a triangle in which
$\mathrm{D} \in \overline{\mathrm{AB}}, \mathrm{E} \in \overline{\mathrm{AC}}$
where $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}, \mathrm{DE}=\mathrm{EC}$
, $\mathrm{DB}=\mathrm{DC}$ and $\mathrm{m}(\angle \mathrm{BDC})=140^{\circ}$


Find : $m(\angle A)$
《 $120^{\circ}$ »
23 In the opposite figure:
$\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{B})=2 x+13^{\circ}$
and $\mathrm{m}(\angle \mathrm{C})=3 x-17^{\circ}$
Find: The measures of the angles of $\triangle \mathrm{ABC}$


24 In each of the following figures, find the value of the symbol used for the measure of the angle :

| 1 $\begin{aligned} & x=\ldots \ldots \ldots .^{\circ}, \\ & y=\ldots \ldots \ldots . . \end{aligned}$ | (2) $\begin{aligned} & x=\ldots \ldots \ldots .^{\circ} \\ & y=\ldots \ldots \ldots \ldots{ }^{\circ} \end{aligned}$ | 3 |
| :---: | :---: | :---: |
| 4 | $\begin{aligned} & x=\ldots \ldots \ldots .{ }^{\circ} \\ & y=\ldots \ldots \ldots \ldots . \end{aligned}$ | $\begin{aligned} & y=\ldots \ldots \ldots .{ }^{\circ}, l=\ldots \ldots \ldots . .^{\circ} \\ & z=\ldots \ldots \ldots .{ }^{\circ} \end{aligned}$ |
| 7 $\begin{aligned} & x=\ldots \ldots \ldots .^{\circ}, \\ & y=\ldots \ldots \ldots .^{\circ} \end{aligned}$ | 8 $\begin{aligned} & x=\ldots \ldots \ldots \\ & y=\ldots \ldots \ldots . . . \end{aligned}$ | 9) $\overrightarrow{\mathrm{AE}}$ bisects $\angle \mathrm{CAD}$ $x=.$ |
|  | 11 $x=\ldots \ldots \ldots{ }^{\circ}$ | 12 $x=\ldots \ldots \ldots .{ }^{\circ}$ |

25 Find the value of $x$ in each of the following figures:
$x=\cdots \cdots \cdots \cdot \mathrm{cm}$.

(2)

$x=$ $\qquad$ -

$x=$ $\qquad$

3


6

$x=$ $\qquad$ ${ }^{\circ}$

## 26 In the opposite figure :

ABC is a triangle in which $\mathrm{D} \in \overline{\mathrm{AB}}, \mathrm{E} \in \overline{\mathrm{BC}}, \mathrm{O} \in \overline{\mathrm{AC}}$
where $\mathrm{m}(\angle \mathrm{DEO})=90^{\circ}, \mathrm{DB}=\mathrm{DE}$ and $\mathrm{OE}=\mathrm{OC}$


Find: $m(\angle A)$
« $90^{\circ}$ »
27 In the opposite figure :
$\mathrm{BA}=\mathrm{BC}, \mathrm{E} \in \overline{\mathrm{AD}}$
and $\overleftrightarrow{\mathrm{BD}}$ bisects each
of $\angle \mathrm{CBE}$ and $\angle \mathrm{CDE}$
Prove that : $\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=180^{\circ}$


## For excellent pupils

28 In the opposite figure :
$m(\angle Y)=m(\angle Z)=90^{\circ}$
, $\mathrm{XY}=\mathrm{MZ}$ and $\mathrm{YM}=\mathrm{ZL}$
Find by proof : m ( $\angle \mathrm{MXL}$ )


## 29 In the opposite figure :

ABC is a triangle, $\mathrm{D} \in \overline{\mathrm{AC}}$ such that $\mathrm{BD}=\mathrm{DC}$
$\mathrm{AD}=\mathrm{AB}$ and $\mathrm{E} \in \overrightarrow{\mathrm{CA}}$
Prove that : $\mathrm{m}(\angle \mathrm{BAE})=4 \mathrm{~m}(\angle \mathrm{BCD})$


## 30 In the opposite figure :

$\mathrm{m}(\angle \mathrm{A})=X^{\circ}, \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DE}$
and $\mathrm{m}(\angle \mathrm{DEO})=126^{\circ}$


Find: The value of $\chi$

## Wonders of numbers

צ Pick any positive 2-digit number, add the two digits, and subtract the sum from the original number.
$\geqslant$ Is the difference divisble by 9 ?
Try other numbers.

## Accumulative test

1 Choose the correct answer from the given ones :
(1) If M is the point of intersection of the medians of $\triangle \mathrm{ABC}, \overline{\mathrm{AD}}$ is a median , then $\mathrm{AD}=$ $\qquad$
(a) 2 AM
(b) $\frac{2}{3} \mathrm{MD}$
(c) $\frac{3}{2} \mathrm{AM}$
(d) 4 MD
(2) The point of intersection of medians of the triangle divides each of them in the ratio 4: from the base.
(a) 2
(b) 8
(c) 1
(d) 4
(3) In the opposite figure :
$\mathrm{BM}=6 \mathrm{~cm}$., then $\mathrm{ME}=$ $\qquad$ cm .
(a) 3
(b) 6
(c) 7
(d) 9
(4) In $\triangle \mathrm{ABC}, \overline{\mathrm{AD}}$ is a median , M is the point of intersection of its medians
 , then $(\mathrm{AM})^{2}=$ $\qquad$ $(\mathrm{AD})^{2}$
(a) 2
(b) $\frac{3}{2}$
(c) $\frac{4}{9}$
(d) $\frac{1}{2}$

## 2 Complete the following:

1 The point of concurrence of the medians of the triangle divides each median in the ratio ................ from the vertex.
(2) If $\overline{\mathrm{AD}}$ is a median in $\triangle \mathrm{ABC}, \mathrm{M}$ is the point of intersection of the medians , $\mathrm{MD}=2 \mathrm{~cm}$., then $\mathrm{AM}=$ $\qquad$ cm .
3 The number of medians of the scalene triangle is
4 The medians of the triangle intersect at
3 In the opposite figure :
$E$ is the midpoint of $\overline{\mathrm{AB}}$
, F is the midpoint of $\overline{\mathrm{BC}}, \mathrm{AC}=12 \mathrm{~cm}$.
Find with proof : The length of $\overline{\mathrm{AD}}$


4 In the opposite figure :
$M$ is the point of intersection of the medians of $\triangle A B C$ , $\mathrm{BM}=6 \mathrm{~cm}$., $\mathrm{BC}=14 \mathrm{~cm}$. $\mathrm{DC}=15 \mathrm{~cm}$.

Find : The perimeter of $\triangle \mathrm{MDE}$


## Accumulative test $\quad 2 \quad$ till lesson 2 - unit 4

1 Choose the correct answer from the given ones:

## In the opposite figure :

ABC is a right-angled triangle at B
, D is the midpoint of $\overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{ACB})=30^{\circ}$
, $\mathrm{AB}=5 \mathrm{~cm}$., then $\mathrm{BD}=$
cm .

(a) 5
(b) 10
(c) 2.5
(d) 15
(E) If $\overline{\mathrm{BD}}$ is a median in $\triangle \mathrm{ABC}, \mathrm{BD}=\frac{1}{2} \mathrm{AC}$, then
(a) $\mathrm{m}(\angle \mathrm{ABC})=90^{\circ}$
(b) $\mathrm{m}(\angle \mathrm{BAC})=90^{\circ}$
(c) $\mathrm{m}(\angle \mathrm{ABC})=30^{\circ}$
(d) $\mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
(3) If $M$ is the point of intersection of the medians of $\triangle A B C, D$ is the midpoint of $\overline{B C}$, then $\mathrm{MD}: \mathrm{AD}=$
(a) $1: 2$
(b) $2: 3$
(c) $1: 3$
(d) $3: 2$

4 A rectangle, its diagonals intersect at $M$, the length of its diagonal is 6 cm ., then the length of the median $\overline{\mathrm{AM}}$ is $\qquad$
(a) 1 cm .
(b) 2 cm .
(c) 3 cm .
(d) 4 cm .

2 Complete the following:
1 The length of the side opposite to the angle of measure $30^{\circ}$ in the right-angled triangle equals
(2) The point of intersection of the medians of the triangle divides each median in the ratio 2 : $\qquad$ from the base.
(3) If M is the point of intersection of the medians of $\triangle \mathrm{ABC}, \overline{\mathrm{AD}}$ is a median its length is 6 cm ., then $\mathrm{AM}=$ $\qquad$ cm .
(4) If ABC is a right-angled triangle at $\mathrm{B}, \mathrm{AB}=3 \mathrm{~cm} ., \mathrm{BC}=4 \mathrm{~cm}$, then the length of the median drawn from B to $\overline{\mathrm{AC}}=$ $\qquad$

3 In the opposite figure :
ABC is a right-angled triangle at B
, $\mathrm{m}(\angle \mathrm{ACB})=60^{\circ}$
, E is the midpoint of $\overline{\mathrm{AC}}, \mathrm{DE}=\mathrm{BC}$
Prove that : $\mathrm{m}(\angle \mathrm{ADC})=90^{\circ}$


4 In the opposite figure :
ABC is a right-angled triangle at B , $\mathrm{m}(\angle \mathrm{C})=30^{\circ}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{BC}}$
, E is the midpoint $\overline{\mathrm{AC}}, \overline{\mathrm{AD}} \cap \overline{\mathrm{BE}}=\{\mathrm{M}\}$

, if $\mathrm{AB}=12 \mathrm{~cm}$., $\mathrm{AD}=15 \mathrm{~cm}$.

## Find with proof :

(1) The length of $\overline{\mathrm{AE}}$
(2) The length of $\overline{\mathrm{ME}}$
(3) The perimeter of $\triangle \mathrm{AME}$

## Accumulative test 3 till lesson 3 - unit 4

1 Choose the correct answer from the given ones :

## 1 In the opposite figure :

ABC is an equilateral triangle
, $\overrightarrow{\mathrm{DE}} / / \overline{\mathrm{CA}}$, then $\mathrm{m}(\angle \mathrm{D})=$
(a) $100^{\circ}$
(b) $60^{\circ}$
(c) $120^{\circ}$
(d) $150^{\circ}$

(2) The point of intersection of the medians of the triangle divides each median in the ratio from the base.
(a) $1: 2$
(b) $2: 1$
(c) $3: 1$
(d) $1: 3$
(3) ABC is a right-angled triangle at $\mathrm{B}, \mathrm{AC}=20 \mathrm{~cm}$., D is the midpoint of $\overline{\mathrm{AC}}$ , then $\mathrm{BD}=$ $\qquad$ cm .
(a) 10
(b) 8
(c) 6
(d) 5
(4) In $\triangle \mathrm{ABC}$, if $\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{A})=2 \mathrm{~m}(\angle \mathrm{~B})$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) $30^{\circ}$
(b) $45^{\circ}$
(c) $60^{\circ}$
(d) $90^{\circ}$

2 Complete the following:
1 The two base angles of the isosceles triangle are
(2) If ABC is a right-angled triangle at $\mathrm{B}, \mathrm{m}(\angle \mathrm{C})=30^{\circ}, \mathrm{AC}=8 \mathrm{~cm}$.
, then $\mathrm{AB}=$ $\qquad$ cm .
(3) If the measure of the vertex angle of an isosceles triangle is $80^{\circ}$, then the measure of its base angles $=$ $\qquad$。
(4) The measure of the exterior angle of the equilateral triangle is $\qquad$。

3 In the opposite figure :
$\overline{\mathrm{BE}}, \overline{\mathrm{CD}}$ are two medians in $\triangle \mathrm{ABC}$ intersect at point M , the perimeter of $\triangle \mathrm{MDE}=12 \mathrm{~cm}$.
Find: The perimeter of $\triangle \mathrm{MBC}$


4 In the opposite figure :
$\mathrm{B} \in \overline{\mathrm{AC}}, \triangle \mathrm{ABD}$ is equilateral
, $\mathrm{EB}=\mathrm{EC}, \mathrm{m}(\angle \mathrm{E})=80^{\circ}$
Find : $m(\angle D B E)$


## Mathematics (Algebra and Statistics)

## Test <br> 1

1 Choose the correct answer from the given ones :
(3 marks)
(1) If $-\sqrt{25}=\sqrt[3]{y}$, then $y=$
(a) 5
(b) -5
(C) 125
(d) -125
(2) The irrational number included between -2 and -1 is
(a) -3
(b) $-1 \frac{1}{3}$
(C) $-\sqrt{3}$
(d) $\sqrt{2}$

3 If $X$ is a negative real number, then which of the following represents a positive number ?
(a) $x^{2}$
(b) $x^{3}$
(C) $3 x$
(d) $\frac{x}{3}$

2 Complete :
$1 \mathbb{R}_{+} \cup \mathbb{R}_{-}=$ $\qquad$
2 The S.S. of the equation : $(x-\sqrt{5})(x+\sqrt{3})=0$ in $\mathbb{Q}$ is
3 A square of area $7 \mathrm{~cm}^{2}$, then its side length $=$ $\qquad$ cm .

3 Prove that: $\sqrt{2}$ lies between 1.4 and 1.5
(2 marks)

4 The capacity of a cube is 27 litres. Find its inner edge length.
(2 marks)

## Test <br> 2



1 Choose the correct answer from the given once :
$1 \mathbb{R}_{+} \cap \mathbb{R}_{-}=$
(a) $\mathbb{R}^{*}$
(b) $\mathbb{R}$
(C) $\mathbb{Q}$
(d) $\varnothing$
(2) $\sqrt[3]{0.001 \times \frac{1}{8}}=$
(a) $\frac{1}{2}$
(b) 2
(C) $\frac{1}{20}$
(d) 20

3 A square of side length $\sqrt{3} \mathrm{~cm}$., then its area is $\qquad$
(a) $4 \sqrt{3}$
(b) 9
(C) 3
(d) 6

2 Complete :
1 If $x^{3}=27$, then $x=$
(2 $\mathbb{Q} \cup \mathbb{Q}=$
(3) The S.S. of the equation : $x^{2}+4=0$ in $\mathbb{R}$ is

3 Find in $\mathbb{R}$ the S.S. of the equation : $2+x^{3}=1$

4 Find the value of $x$ in each of the following :
(2 marks)
(1 $\sqrt[3]{x}=\frac{1}{2}$
(2) $x^{3}+5=32$

## Mathematics (Geometry)

## Test 1

1 Choose the correct answer from the given ones :
(3 marks)
1 The number of medians of the right-angled triangle is
(a) zero
(b) 1
(C) 2
(d) 3
(2) ABC is a right-angled triangle at $\mathrm{B}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{AC}}$ , then $\mathrm{BD}=$ $\qquad$
(a) $\frac{1}{2} \mathrm{AC}$
(b) AC
(C) $\frac{1}{2} \mathrm{BC}$
(d) AB
$3 \Delta \mathrm{XYZ}$ is an isosceles triangle in which, $\mathrm{m}(\angle \mathrm{Y})=100^{\circ}$, then $\mathrm{m}(\angle \mathrm{Z})=$
(a) $100^{\circ}$
(b) $80^{\circ}$
(C) $50^{\circ}$
(d) $40^{\circ}$

2 Complete :
1 The length of the hypotenuse in the right-angled triangle equals the length of the median drawn from the vertex of the right angle.

2 The measure of the exterior angle of the equilateral triangle equals $\qquad$ .${ }^{\circ}$
(3) The point of intersection of medians of the triangle divides each of them in the ratio : 2 from the base.

3 In the opposite figure :
If $D$ and $E$ are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively
$, \overline{\mathrm{BE}} \cap \overline{\mathrm{DC}}=\{\mathrm{M}\}, \mathrm{DE}=4 \mathrm{~cm}$.
, $\mathrm{DM}=3 \mathrm{~cm}$., $\mathrm{BE}=6 \mathrm{~cm}$.
Find : The perimeter of $\Delta \mathrm{BMC}$


4 In the opposite figure :
(2 marks)
$\mathrm{D} \in \overrightarrow{\mathrm{CB}}, \mathrm{m}(\angle \mathrm{ABD})=125^{\circ}$
and $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$
Prove that : $\Delta \mathrm{ABC}$ is an isosceles triangle.


## Test

1 Choose the correct answer from the given ones :
1 If M is the point of concurrence of medians of $\triangle \mathrm{ABC}, \overline{\mathrm{BD}}$ is a median , then $\mathrm{BM}: \mathrm{MD}=$ $\qquad$ ...
(a) $2: 3$
(b) $2: 1$
(C) $3: 1$
(d) $1: 2$
2. In $\triangle \mathrm{ABC}$, if $\mathrm{m}(\angle \mathrm{B})=90^{\circ}$ and $\mathrm{m}(\angle \mathrm{C})=30^{\circ}$, then $\mathrm{AB}=$ AC
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(C) twice
(d) $\frac{1}{4}$

3 If the measure of one of the base angles of an isosceles triangle is $45^{\circ}$, then the triangle is $\qquad$ triangle.
(a) obtuse-angled.
(b) acute-angled.
(c) right-angled.
(d) equilateral.

## 2 Complete:

1 The medians of the triangle intersect at
(2) The length of the side opposite to the angle of measure $30^{\circ}$ in the right-angled triangle equals

## 3 In the opposite figure :

If $\mathrm{DM}=4 \mathrm{~cm}$.
, then $\mathrm{XD}=$ cm .


3 In the opposite figure :
$\mathrm{AD}=\mathrm{DC}=\mathrm{AC}, \mathrm{AB}=\mathrm{BC}$
, $\mathrm{m}(\angle \mathrm{ABC})=40^{\circ}$
Find : m $(\angle \mathrm{BAD})$


4 In the opposite figure :
$\mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{CBE})=90^{\circ}, \mathrm{m}(\angle \mathrm{BEC})=30^{\circ}$
, D and F are the midpoints of $\overline{\mathrm{BC}}$ and $\overline{\mathrm{CE}}$ respectively
, $\mathrm{AD}=3 \mathrm{~cm}$.
Find : the length of $\overline{\mathrm{BF}}$


## Answers of Test <br> 1

1 (d)
(c)
(3) (a)
$21 \mathbb{R}^{*}$ or $\mathbb{R}-\{0\}$
(2) $\{\sqrt{5},-\sqrt{3}\}$
(3) $\sqrt{7}$
$3 \because(\sqrt{2})^{2}=\sqrt{2} \times \sqrt{2}=2,(1.4)^{2}=1.96,(1.5)^{2}=2.25$
$\therefore 1.96<2<2.25$
$\therefore \sqrt{1.96}<\sqrt{2}<\sqrt{2.25}$
$\therefore 1.4<\sqrt{2}<1.5$
$\therefore \sqrt{2}$ lies between $1.4,1.5$

427 litres $\times 1000=27000 \mathrm{~cm}^{3} . \quad \because$ volume of the cube $=\ell^{3}$
$\therefore \ell^{3}=27000$
$\therefore l=\sqrt[3]{27000}$
$\therefore \ell=30 \mathrm{~cm}$.

## Answers of Test 2

1 (d)
(2)
(3) (C)
23
(2) $\mathbb{R}$
(3) $\varnothing$
(3) $\because 2+x^{3}=1$
$\therefore x^{3}=1-2=-1$
$\therefore x=\sqrt[3]{-1}=-1$
$\therefore$ The S.S. $=\{-1\}$
4 (1) $\because \sqrt[3]{x}=\frac{1}{2}$
$\therefore x=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
(2) $\begin{aligned} & \because x^{3}+5=32 \\ & \therefore x=\sqrt[3]{27}=3\end{aligned}$
$\therefore x^{3}=32-5=27$

## Answers of Test

1
1 (d)
(2)
(3)

21 twice
(2) $120^{\circ}$
(3) 1
$3 \because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$
, E is the midpoint of $\overline{\mathrm{AC}}$ (given)
$\therefore \mathrm{BC}=2 \mathrm{DE} \quad \therefore \mathrm{BC}=8 \mathrm{~cm}$.
$\because \mathrm{M}$ is the point of intersection of medians of $\triangle \mathrm{ABC}$

$\therefore \mathrm{MC}=2 \mathrm{DM}$
$\therefore \mathrm{MC}=6 \mathrm{~cm}$.
, $\mathrm{BM}=\frac{2}{3} \mathrm{BE}$
$\therefore \mathrm{BM}=4 \mathrm{~cm}$.
$\therefore$ The perimeter of $\Delta \mathrm{BMC}=8+6+4=18 \mathrm{~cm}$.
(The req.)
$4 \because \mathrm{~B} \in \overline{\mathrm{DC}}$
$\therefore \mathrm{m}(\angle \mathrm{ABC})=180^{\circ}-125^{\circ}=55^{\circ}$
In $\triangle \mathrm{ABC}: \mathrm{m}(\angle \mathrm{C})=180^{\circ}-\left(55^{\circ}+70^{\circ}\right)=55^{\circ}$

$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{C})$
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \Delta \mathrm{ABC}$ is an isosceles triangle.
(The req.)

## Answers of Test 2

1 (b)
2 (a)
(3)

21 one point
(2) half length of the hypotenuse
(3) 12 cm .
$3 \because \Delta \mathrm{ACD}$ is an equilateral triangle
$\therefore \mathrm{m}(\angle \mathrm{CAD})=60^{\circ}$
In $\triangle \mathrm{ABC}$ :

$\because \mathrm{AB}=\mathrm{BC}$
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{BCA})=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$
From (1), (2) :
$\therefore \mathrm{m}(\angle \mathrm{BAD})=60^{\circ}+70^{\circ}=130^{\circ}$
(The req.)

4 In $\triangle \mathrm{ABC}$ :
$\because \mathrm{m}(\angle \mathrm{BAC})=90^{\circ}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{BC}}$
$\therefore \mathrm{BC}=2 \mathrm{AD}=2 \times 3=6 \mathrm{~cm}$.
In $\triangle \mathrm{CBE}$ :
$\because \mathrm{m}(\angle \mathrm{CBE})=90^{\circ}, \mathrm{m}(\angle \mathrm{E})=30^{\circ}$
$\therefore \mathrm{EC}=2 \mathrm{BC}=2 \times 6=12 \mathrm{~cm}$.

$\because F$ is the midpoint of $\overline{\mathrm{EC}}$
$\therefore \mathrm{BF}=\frac{1}{2} \mathrm{EC}=\frac{1}{2} \times 12=6 \mathrm{~cm}$.
(The req.)

## Test

Total mark

1 Choose the correct answer from the given ones :
(1) If $-\sqrt{25}=\sqrt[3]{y}$, then $y=$ $\qquad$
(a) 5
(b) -5
(c) 125
(d) -125
(2) The irrational number included between -2 and -1 is $\qquad$
(a) -3
(b) $-1 \frac{1}{3}$
(c) $-\sqrt{3}$
(d) $\sqrt{2}$
(3) If $X$ is a negative real number, then which of the following represents a positive number?
(a) $x^{2}$
(b) $x^{3}$
(c) $3 x$
(d) $\frac{x}{3}$

2
Complete :
(3 marks)
(1) $\mathbb{R}_{+} \cup \mathbb{R}_{-}=$ $\qquad$
(2) The S.S. of the equation : $(x-\sqrt{5})(x+\sqrt{3})=0$ in $\grave{\mathbb{Q}}$ is
(3) A square of area $7 \mathrm{~cm}^{2}$, then its side length $=$ $\qquad$ cm .

Prove that : $\sqrt{2}$ lies between 1.4 and 1.5
(2 marks)

4 The capacity of a cube is 27 litres. Find its inner edge length.

## Test 2

1 Choose the correct answer from the given ones :
$1 \mathbb{R}_{+} \cap \mathbb{R}_{-}=$
(a) $\mathbb{R}^{*}$
(b) $\mathbb{R}$
(c)Q
(d) $\varnothing$
$\sqrt[\varepsilon]{2.001 \times \frac{1}{8}}=$
(a) $\frac{1}{2}$
(b) 2
(c) $\frac{1}{20}$
(d) 20
(3) A square of side length $\sqrt{3} \mathrm{~cm}$., then its area is $\qquad$ $\mathrm{cm}^{2}$
(a) $4 \sqrt{3}$
(b) 9
(c) 3
(d) 6

## Complete :

1 If $x^{3}=27$, then $x=$
$\mathbb{Q Q} \cup(\mathbb{Q}=$
3The S.S. of the equation: $x^{2}+4=0$ in $\mathbb{R}$ is $\qquad$

Find in $\mathbb{R}$ the S.S. of the equation : $2+x^{3}=1$

4 Find the value of $\mathcal{X}$ in each of the following :
$1 \sqrt[3]{x}=\frac{1}{2}$
$2 x^{3}+5=32$

## on Geometry

## Test

1 Choose the correct answer from the given ones :
(1) The number of medians of the right-angled triangle is
(a) zero
(b) 1
(c) 2
(d) 3
(2) ABC is a right-angled triangle at $\mathrm{B}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{AC}}$ , then $\mathrm{BD}=$ $\qquad$
(a) $\frac{1}{2} \mathrm{AC}$
(b) AC
(c) $\frac{1}{2} \mathrm{BC}$
(d) AB
(3) $\triangle \mathrm{XYZ}$ is an isosceles triangle in which, $\mathrm{m}(\angle \mathrm{Y})=100^{\circ}$, then $\mathrm{m}(\angle \mathrm{Z})=$
(a) $100^{\circ}$
(b) $80^{\circ}$
(c) $50^{\circ}$
(d) $40^{\circ}$

2 Complete :
(3 marks)
(1) The length of the hypotenuse in the right-angled triangle equals the length of the median drawn from the vertex of the right angle.
(2) The measure of the exterior angle of the equilateral triangle equals ..
(3) The point of intersection of medians of the triangle divides each of them in the ratio $\qquad$ : 2 from the base.

3 In the opposite figure :
(2 marks)
If D and E are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively
, $\overline{\mathrm{BE}} \cap \overline{\mathrm{DC}}=\{\mathrm{M}\}, \mathrm{DE}=4 \mathrm{~cm}$.
, $\mathrm{DM}=3 \mathrm{~cm}$., $\mathrm{BE}=6 \mathrm{~cm}$.
Find: The perimeter of $\triangle \mathrm{BMC}$


4 In the opposite figure :
(2 marks)
$\mathrm{D} \in \overrightarrow{\mathrm{CB}}, \mathrm{m}(\angle \mathrm{ABD})=125^{\circ}$
and $\mathrm{m}(\angle \mathrm{A})=70^{\circ}$
Prove that : $\triangle \mathrm{ABC}$ is an isosceles triangle.


## Test <br> 2


(3 marks)

1 Choose the correct answer from the given ones:
(1) If M is the point of concurrence of medians of $\triangle \mathrm{ABC}, \overline{\mathrm{BD}}$ is a median , then $\mathrm{BM}: \mathrm{MD}=$ $\qquad$
(a) $2: 3$
(b) $2: 1$
(c) $3: 1$
(d) $1: 2$
(2) In $\triangle \mathrm{ABC}$, if $\mathrm{m}(\angle \mathrm{B})=90^{\circ}$ and $\mathrm{m}(\angle \mathrm{C})=30^{\circ}$, then $\mathrm{AB}=$ AC
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) twice
(d) $\frac{1}{4}$
(3) If the measure of one of the base angles of an isosceles triangle is $45^{\circ}$, then the triangle is $\qquad$ triangle.
(a) obtuse-angled.
(b) acute-angled.
(c) right-angled.
(d) equilateral.

2 Complete:
1 (1) The medians of the triangle intersect at
(2) If the length of the median drawn from a vertex of a triangle equals half the length of the opposite side to this vertex, then $\qquad$
(3) The isosceles triangle in which the measure of one of its angles equals $60^{\circ}$ is $\qquad$

3 In the opposite figure :
$\mathrm{AD}=\mathrm{DC}=\mathrm{AC}, \mathrm{AB}=\mathrm{BC}$
, $\mathrm{m}(\angle \mathrm{ABC})=40^{\circ}$
Find : $m(\angle B A D)$


4 In the opposite figure :
$\mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{CBE})=90^{\circ}, \mathrm{m}(\angle \mathrm{BEC})=30^{\circ}$
, D and F are the midpoints of $\overline{\mathrm{BC}}$ and $\overline{\mathrm{CE}}$ respectively , $\mathrm{AD}=3 \mathrm{~cm}$.
Find : the length of $\overline{\mathrm{BF}}$


## October Rev PREP 2

## FIRST ALGERBA

## Q1: Choose the correct answer:

1) If $-\sqrt{25}=\sqrt[3]{y}$, then $y=$ $\qquad$
(a) 5
(b) -5
(c) 125
(d) -125
2) If $x^{3}=64$, then $x=$ $\qquad$
(a) 4
(b) -4
(c) 2
(d) -2
3) If $\frac{x}{3}=\frac{9}{x^{2}}$, then $x=$ $\qquad$
(a) 1
(b) 3
(c) 9
(d) 27
4) The irrational number located between 2 and 3 is $\qquad$
(a) $\sqrt{7}$
(b) $\sqrt{10}$
(C) 2.5
(d) $\sqrt{3}$
5) $\sqrt{6} \in$
(a) N
(b) $\mathbf{Q}$
(c) $\mathbf{Q}^{\prime}$
(d) $\mathbf{Z}$
6) $\sqrt[3]{9} \ldots \ldots \sqrt{4}$
(a) $>$
(b) $<$
(c) $=$
(d) $\leq$
7) The irrational number located between 4 and 5 is $\qquad$
(a) $\sqrt{8}$
(b) $4 \sqrt{2}$
(C) $3 \sqrt{2}$
(d) $\sqrt{10}$
8) If $X$ is a negative number, then which of the following numbers is positive?
(a) $\mathbf{x}^{3}$
(b) $2 x$
(C) $x^{2}$
(d) $\frac{x}{2}$
9) $R=$ $\qquad$
(a) $R_{+} \cup R_{-}$
(b) $\mathbf{R}_{+} \cap \mathbf{R}_{-}$
(c) $]-\infty, \infty[$
(d) $\mathbf{Q}^{\cap} \mathbf{Q}^{\prime}$
10) The set of non-negative real numbers $=$ $\qquad$
(a) $] 0, \infty[$
(b) $]-\infty, 0[$
(C) $[0, \infty[$
(d) $]-\infty, 0]$

## October Rev PREP 2

## FIRST ALGERBA

11) The S.S of the equation: $x^{3}=8$ in $Q$ is
(a) $\{-2\}$
(b) $\{2\}$
(C) $\{-\mathbf{2}, \mathbf{2}\}$
(d) $\{64\}$
12) $[3,5]-\{5\}=$
(a) $[3,4]$
(b) $[3,5[$
(c) $\{3,4\}$
(d) 13,5$]$
13) If $x<\sqrt[3]{36}<x+1, x \in Z$, then $x=$ $\qquad$
(a) 2
(b) 3
(C) 4
(d) 6
14) The S.S of the equation: $x^{2}+9=0$ in $R$ is $\qquad$
(a) $\{-9\}$
(b) $\{-3,3\}$
(c) $\{-3\}$
(d) $Q$
15) $\sqrt[3]{(-8)^{2}}=\ldots \ldots \ldots \ldots .$.
(a) -4
(b) -2
(c) $\mathbf{2}$
(d) 4
16) If $X=\left[-1, \infty\left[\right.\right.$, Then $X^{\prime}=\ldots \ldots .$.
(a) $]-\infty,-1]$
(b) $]-\infty,-1[$
(c) $[-\infty, 1[$
(d) $]-\infty, 1]$
17) $]-1,3] \cup\{0,-1\}=\ldots \ldots .$.
(a) 10,3$]$
(b) $]-1,3[$
(C) $[-1,3]$
(d) $[0,3]$
18) $\sqrt{5} \ldots \ldots .\{\{2,5\}$
(a) $\subset$
(b) $\notin$
(c) $\in$
(d) $\downarrow$
19) $\sqrt{25+144}=5+$.
(a) 12
(b) 13
(c) 8
(d) 6
20)The solution set of the equation: $x\left(x^{2}-1\right)=0$ in $R$ is
(a) $\{0\}$
(b) $\{1\}$
(C) $\{-1\}$
(d) $\{0,-1,1\}$
20) The irrationl number in the following numbers is
(a) $\sqrt{\frac{25}{9}}$
(b) $\sqrt[3]{\frac{1}{27}}$
(c) $\sqrt{3}$
(d) $\sqrt[3]{125}$

## October Rev PREP 2

## FIRST ALGERBA

22) The sum of all real numbers in [-75, 75] is
(a) 75
(b) -75
(C) 150
(d) zero
23) $\{3\} \cap[3,6]=$ $\qquad$
(a) $\{3\}$
(b) $Q$
(c) 13,6$]$
(d) $\{6\}$
24) $R_{+} \cup R_{-}=$ $\qquad$
(a) $R$
(b) $Q$
(C) $\mathbf{R}_{+}$
(d) $\mathrm{R}^{*}$
25) The area of a square whose side length is $\sqrt{3} \mathrm{~cm}$ is ....... $\mathrm{cm}^{2}$
(a) $4 \sqrt{3}$
(b) 9
(c) 3
(d) 6
26) The nearest integer to $\sqrt[3]{25}$ is
(a) 5
(b) 3
(c) 2
(d) 12.5
27) The irrational number located between 2 and 3 is
(a) $\sqrt{3}$
(b) $\sqrt{-1}$
(C) $\sqrt{7}$
(d) $2 \frac{1}{2}$
28) $Q \cap Q^{`}=$ $\qquad$
(a) $R$
(b) $Q$
(c) $\mathbf{Q}$
(d) $\mathbf{Q}^{\prime}$
29) TheS.S of the equation: $X^{3}=8$ in $Q$ is $\qquad$
(a) $\{-2\}$
(b) $\{2\}$
(c) $\{\mathbf{2},-\mathbf{2}\}$
(d) $\{64\}$
30) If $x \in[-3, \infty[$, then
(a) $x<-3$
(b) $x \leq-3$
(c) $x>-3$
(d) $x \geq-3$


## October Rev PREP 2

## FIRST ALGERBA

## Q2: Complete the following:

1) $Q \cup Q=$ $\qquad$
2) $[3,4]-\{3,5\}=$
3) $\{-1,0,1\} \cap]-1,1[=$
4) $R_{+}$in an interval form is $\qquad$
5) $]-2,3] \cap R=$ $\qquad$
6) $\sqrt{25 x^{8}}=\ldots \ldots . .$.
7) The square whose side length is $\sqrt{7} \mathrm{~cm}$. its area is
8) The S.S of the equation: $X^{2}+16=0$ in $R$ is
9) If $-x>4$, then $x<$
10) If $x$ is a positive real number, then $X>X^{2}$ when $\left.X \in\right]$
11) $]-3,5] \cup\{-2,3,4\}=$
12) $[2,7]-] 2,1[=$
13) The square whose area is $10 \mathrm{~cm}^{2}$, its side length is cm
14) $[3,5]-\{3,5\}=$
15) $R-Q=$

Q3: Answer the following:

1) Arrange the following numbers ascendingly:

$$
\sqrt{8},-\sqrt{3}, \sqrt{15}, \sqrt{5},-\sqrt{7} \text { and }-\sqrt{11}
$$

2) Arrange the following numbers descendingly:

$$
\sqrt{6}, 9,-\sqrt{10},-\sqrt{7},-\sqrt{50} \text { and } \sqrt{101}
$$

3) Write four inational numbers included between 15 and 17
4) Prove that: $\sqrt{11}$ is included between 3.31 and 3.32
5) Prove that: $\sqrt[3]{15}$ is included between 2.4 and 2.5

## October Rev PREP 2

## FIRST ALGERBA

6) If $X=[3,2[, Y=[-1,5]$, find using the number line:
1- $X \cap Y$
2-X $\cup Y$
3-X - Y
7) If $A=]-\infty, 3[, B=[-2,5]$

Find using the number line :
1-A - B
2-A $\cap B$
3-A $\cup B$
4- À 5- B
8) Find in real numbers the S.S of each of the following equations:
a. $125 x^{3}-7=20$
b. $(x+\sqrt{7})\left(x^{3}-6\right)=$ zero
c. $\left(x^{3}+5\right)\left(x^{2}-3\right)=$ zero
d. $(5 x-2)^{3}+10=18$
e. $2 x^{3}-5=x^{3}+3$

## auick 

If you wait for just the right time to do something, well, that time may never come. In fact, the right time may be right now.

October Rev PREP 2

SECOND GEOMETRY
Q1: Choose the correct answer:

1) The number of medians of the right-angled tiangle is $\qquad$
(a) zero
(b) 1
(c) 2
d 3
2) $\triangle X Y Z$ is an isosceles triangle in which, $m(\angle Y)=100^{\circ}$, then $m(\angle Z)=\ldots$.
(a) $100^{\circ}$
(b) $\mathbf{8 0 ^ { \circ }}$
(c) $\mathbf{5 0}{ }^{\circ}$
(d) $40^{\circ}$
3) The length of the median drawn from the vertex of the right-angle in the right-angled triangle equals $\qquad$ the length of the hypotenuse
(a) third
(b) quarter
(c) half
(d) double
4) If the measure of one of the base angles of an isosceles triangle is $40^{\circ}$ then the measure of its vertex angle equals $\qquad$
(a) $100^{\circ}$
(b) $\mathbf{8 0}$
(c) $\mathbf{5 0}{ }^{\circ}$
(d) $40^{\circ}$
5) The point of concurrence of the medians of the triangle divides each of them in the ratio of. $\qquad$ from the base.
(a) $2: 1$
(b) $1: 2$
(c) $1: 3$
(d) $3: 1$
6) If $M$ is the point of intersection of the medians of $\triangle A B C, D$ is a midpoint of $\overline{B C}$, then $A D=$. $\qquad$
(a) 2 AM
(b) $\frac{2}{3} \mathrm{MD}$

CS
(C) $\frac{3}{2} A M$ $\qquad$ (d) 4 MD
7) If $M$ is the point of intercection of the medians of $\triangle A B C, \overline{A D}$ is a median of length 6 cm , then $A M=$ $\qquad$ cm
(a) 1
(b) 2
(c) 4
(d) 3
8) In the thirty sixty triangle, the ratio between the length of the median drawn from the vertex of the right angle and the length of the side opposite to the angle of measure $30^{\circ}$ is $\qquad$
(a) 2:1
(b) $1: 2$
(c) $1: 1$
(d) $2: 3$

## October Rev PREP 2

## SECOND GEOMETRY

9) In the right-angled triangle, the ratio between the length of the median drawn from the vertex of the right angle and the length of the hypotenuse is $\qquad$
(a) 2:1
(b) $1: 2$
(C) $1: 1$
(d) $2: 3$
10) In $\triangle X Y Z$, if $X Y=X Z$, then the exterior angle at the vertex $Z$ is $\qquad$
a acute
(b) obtuse
(C) right
(d) reflex
11) If $\triangle A B C$ is right-angled at $A$ and $A B=A C$, then $m(\angle B)=$ $\qquad$
(a) $30^{\circ}$
(b) $45^{\circ}$
(C) $60^{\circ}$
(d) $90^{\circ}$
12) The measure of the exterior angle of the equilateral triangle equals?
(a) $60^{\circ}$
(b) $120^{\circ}$
(c) $180^{\circ}$
(d) $90^{\circ}$
13) In $\triangle A B C, A B=A C, m(\angle B)=6 x^{\circ}, m(\angle A)=3 x^{\circ}$, then $x=$
(a) $60^{\circ}$
(b) $30^{\circ}$
(C) $12^{\circ}$
(d) $90^{\circ}$
14) If the measure of the vertex angle of an isosceles triangle is $80^{\circ}$, then the measure of its base angle is
(a) $100^{\circ}$
(b) $50^{\circ}$
(c) $80^{\circ}$
(d) $40^{\circ}$
15) If $\triangle A B C$ is a right-angled triangle at $A$ and $A B=A C$, then $m(\angle B)=\ldots$.
(a) $30^{\circ}$
(b) $45^{\circ}$
(c) $60^{\circ}$
(d) $90^{\circ}$
16) The sum of measures of the accumulative angles at a point equals?
(a) $60^{\circ}$
(b) $270^{\circ}$
(c) $180^{\circ}$
(d) $360^{\circ}$
17) The measure of the interior angle of an equilateral triangle equals?
(a) $60^{\circ}$
(b) $120^{\circ}$
(c) $180^{\circ}$
(d) $90^{\circ}$
18) In $\triangle A B C, A B=A C, m(\angle B)=x+30^{\circ}, m(\angle C)=2 x+5^{\circ}$, the $x=$ $\qquad$
(a) $25^{\circ}$
(b) $\mathbf{2 0}^{\circ}$
(C) $35^{\circ}$
(d) $65^{\circ}$
19) If $A B C$ is an isosceles triangle, $m(\angle A)=60^{\circ}, A B=4 \mathrm{~cm}$. then its perimeter $=$ $\qquad$ cm.
(a) 4
(b) 12
(c) 6
(d) 9

# October Rev PREP 2 

## SECOND GEOMETRY

## Q2: Complete the following:

1) The base angles of an isosceles triangle are
2) The medians of a triangle intersect at
3) If the three angles in the triangle are congruent, then the triangle is $\qquad$
4) If the measure of one angle of an isosceles triangle is $60^{\circ}$, then the triangle is $\qquad$
5) In the isosceles triangle, if the measure of one of the two base angles is $65^{\circ}$, then the measure of its vertex angle equals
6) The length of the hypotenuse in the right-angled triangle equals $\qquad$ the length of the median drawn from the vertex of the right angle.
7) If the length of the median drawn from a vertex of a triangle equals half the length of the opposite side to this vertex, then the angle at this vertex is
8) The length of the median from the vertex of the right angle in the right-angled triangle equals
9) The point of intersection of medians of the triangle divides each of them in the ratio $\qquad$ : 5 from the vertex
10) The point of intersection of medians of the $t$ angle divides each of them in the ratio $3: \ldots . . . .$. from the base.
11) If $\overline{A D}$ is a median in $\triangle A B C, M$ is the point of intersection of medians ,then AD = .......... AM
12) The number of medians of Scalene triangle is

## SECOND GEOMETRY

## Q3: Answer the following:

1) In the opposite figure :

If $\overline{\mathrm{AC}} \cap \overline{\mathrm{BD}}=\{\mathrm{M}\}$
, $\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$ and $\mathrm{MB}=\mathrm{MC}$
, prove that :

$\triangle \mathrm{MAD}$ is isosceles.

and $\triangle \mathrm{ABC}$ is an equilateral triangle.
Find: $m$ ( $\angle D C B$ )
3) In the opposite figure :
$\mathrm{AD}=\mathrm{DC}=\mathrm{AC}=\mathrm{BD}$
, $\mathrm{m}(\angle \mathrm{B})=65^{\circ}$
Find with proof : m ( $\angle \mathrm{BDA})$

4) In the opposite figure:
$\triangle \mathrm{ABC}$ is right-angled at B
, E and D are the midpoints of $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BC}}$ respectively , $\mathrm{AC}=12 \mathrm{~cm}$.


Find the length of each of : $\overline{\mathrm{BE}}$ and $\overline{\mathrm{ME}}$
5) In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABC})=90^{\circ}, \mathrm{m}(\angle \mathrm{C})=30^{\circ}$
, $\mathrm{AD}=\mathrm{DC}$ and $\mathrm{AC}=10 \mathrm{~cm}$.


Find: The perimeter of $\triangle \mathrm{ABD}$

## October Rev PREP 2

## FIRST ALGERBA

## ANSWER MODEL

Q1: Choose the correct answer:

| 1) $d$ | 6) $a$ | 11) $b$ | 16) $b$ | 21) $c$ | 26) $b$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2) $a$ | 7) $c$ | 12) $b$ | 17) $c$ | 22) $d$ | 27) $c$ |
| 3) $b$ | 8) $c$ | 13) $b$ | 18) $b$ | 23) $a$ | 28) $b$ |
| 4) $a$ | 9) $c$ | 14) $d$ | 19) $c$ | 24) $d$ | 29) $b$ |
| 5) $c$ | 10) $c$ | 15) $d$ | 20) $d$ | 25) $c$ | 30) $d$ |

Q2: Complete the following:

1) $R$
2) $5 x^{4}$
3) ]-3, 5]
4) $] 3$, 4]
5) 7
6) $\{2\} \cup[1,7]$
7) $\{0\}$
8) $Q$
9) $\sqrt{10}$
10) $] 0, \infty[$
11) -4
12) ]3, 5[
13) ]-2 , 3]
14) ] 0,1 [
15) Q'

## MATHEMATICS TEACHER TEL: O1003780857

## October Rev PREP 2

## SECOND GEOMETRY

## ANSWER MODEL

Q1: Choose the correct answer:

| 1) $d$ | 6) $c$ | 11) b | 16) $d$ |
| :--- | :--- | :--- | :--- |
| 2) $d$ | 7) $c$ | 12) $b$ | 17) $a$ |
| 3) $c$ | 8) $c$ | 13) $c$ | 18) $a$ |
| 4) $a$ | 9) $b$ | 14) b | 19) $b$ |
| 5) $b$ | 10) $b$ | $15) b$ |  |

Q2: Complete the following:

1) Congruent
2) twice
3) one point
4) equilateral
5) right
6) half the hypotenuse
7) equilateral
8) 10
9) 50
10) 6
11) $\frac{3}{2}$
12) 3

$$
\begin{aligned}
& \text { MATHEMATICS TEACHER } \\
& \text { TEL:O1003780857 }
\end{aligned}
$$

## Revision for the important rules of Algebra

## First Real numbers

## Remember that

- $\mathbb{R}=\mathbb{Q} \cup \stackrel{Q}{\mathbb{Q}}$
- $\mathbb{Q} \cap \mathbb{Q}=\varnothing$
- $\mathbb{R}-\mathbb{Q}=\mathbb{Q}$
- $\mathbb{R}-\mathbb{Q}=\mathbb{Q}$
- $\mathbb{R}_{+} \cap \mathbb{R}_{-}=\varnothing$
- $\mathbb{R}=\mathbb{R}_{+} \cup\{0\} \cup \mathbb{R}_{-}$
- $\pi \in \bar{Q}$
- $\mathbb{R}^{*}=\mathbb{R}-\{0\}$


## Remember The representing of the irrational number on the number line

Each irrational number can be represented by a point on the number line. and to draw a line segment with length $=\sqrt{a}$ length unit where $a>1$

Draw a right-angled triangle in which :

- The length of one side of the right-angle $=\frac{a-1}{2}$ length unit.
- The length of the hypotenuse $=\frac{a+1}{2}$ length unit.
 and we can apply this to represent the irrational number $\sqrt{7}$ on the number line as the following :
- From the point which represents the number zero on the number line, we draw a perpendicular line segment as $\overline{\mathrm{OA}}$ where $\mathrm{OA}=\frac{7-1}{2}=3$ length units.
- Using the compasses with a distance $=\frac{7+1}{2}=4$ length units. and centre at A , draw an arc to cut the number
 line on the right side of the point $O$ at the point $B$ , then $B$ is the point which represents $\sqrt{7}$ as in the figure.
- Notice that : To represent the number $(-\sqrt{7})$, we draw the arc which cuts the number line on its left side, not on its right side.
- Notice that : To represent the number $(1+\sqrt{7})$, we follow the same previous steps but we draw the perpendicular line segment $\overline{\mathrm{OA}}$ from the point which represents the number 1 , not the number 0

| Intervals | Intersection | Union | Difference | Complement |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{X}=[-1,5[ \\ & \mathrm{Y}=]-3,2[ \end{aligned}$ |  |  |  |  |
| $\begin{aligned} & \mathrm{X}=]-\infty, 1] \\ & \mathrm{Y}=[-2,1[ \end{aligned}$ | $\xrightarrow[i_{-2}^{2}]{\mathrm{X} \cap \mathrm{Y}=[-2,1[ }$ | $\xrightarrow[i]{-2}$ | $\begin{aligned} & \underset{-2}{8} \\ & =]-\infty,-2[\cup\{1\} \\ & , \mathrm{Y}-\mathrm{X}=\varnothing \end{aligned}$ | $\xrightarrow[i]{\stackrel{-\cdots}{x}=]_{1}, \infty[ }$ |
| $\begin{aligned} & \mathrm{X}=[-1,5] \\ & \mathrm{Y}=]-1,5[ \end{aligned}$ | $\underset{\substack{8 \\ \mathrm{e}}}{\stackrel{8}{8} \cap \mathrm{Y}=]-1,5[ }$ | $\xrightarrow[{\substack{8 \\ X \cup Y=[-1,5]}}]{\stackrel{8}{8}}$ |  |  |
| $\begin{aligned} & \mathrm{X}=]-3,4] \\ & \mathrm{Y}=\{-3,4\} \end{aligned}$ |  | $\underset{\substack{8 \\ X \cup[-3,4]}}{\stackrel{8}{8}=[ }$ | $\xrightarrow[-3]{8-3} \underset{4}{8}$ | $\underset{-3}{\substack{0 \\ \hat{Y}=\mathbb{R}-\{-3,4\}}}$ |

## 1 Complete the Following:


$2 \sqrt[3]{-8}=$
$3||\sqrt[3]{-125}|=$
4 |ca $|\sqrt[3]{-125}|=\sqrt{ }$
$5 \sqrt[3]{27}-\sqrt[3]{-27}=$
$6-\sqrt[3]{-1}-\sqrt{1}=$
$7 \sqrt[3]{64+\cdots \cdots \cdots \cdots}=5$
$8 \sqrt[3]{\cdots \cdots \cdots \cdots}=4$
$9 \quad \sqrt{16}=\sqrt[3]{\ldots \ldots \ldots}$
$10 \quad \sqrt[3]{64}=\sqrt{ }$
11 If: $\sqrt[3]{64}=\sqrt{x}$, then $2 x=$
12 If : $x^{2}=5$, then $(x+\sqrt{5})^{2}=\ldots \ldots \ldots$. or
$13 \frac{x^{3}}{y^{3}}=\frac{1}{64}$, then $\left(\frac{y}{x}\right)^{2}=$
14 If $8=\sqrt[3]{x}$, then $x=$
15 If $\sqrt[3]{x}=-\sqrt{4}$, then $x=$

| 16 | $\sqrt{9+16}=3+\cdots \cdots \cdots \cdots \cdots$ |
| :---: | :---: |
| 17 | The solution set for the equation : $x^{2}+1=0$ in $\mathbb{R}$ is .............. |
| 18 | The solution set of the equation : $x^{2}+4=0$ in $\mathbb{R}$ is $\ldots \ldots . . .$. |
| 19 | The solution set of the equation : $x^{2}+9=0$ in $\mathbb{Q}$ is .............. |
| 20 | The S.S. of the equation : $x^{2}+25=0$ in $\mathbb{R}$ is ............. |
| 21 | The solution set of the equation : $\left(x^{2}+3\right)\left(x^{2}+1\right)=0$ where $x \in \mathbb{R}$ is $\ldots \ldots . . . . . . . .$. |
| 22 | , The S.S. of the equation : $\left(x^{2}-1\right)(x+5)=0$ in $\mathbb{R}$ is .............. |
| 23 | The S.S. of the equation : $\left(x^{2}+1\right)(x-5)=0$ in $\mathbb{R}$ is ............. |
| 24 | The S.S. of the equation: $x^{3}+1=2$ in $\mathbb{R}$ is ............. |
| 25 | The S.S. of the equation : $x\left(x^{3}-1\right)=0$ in $\mathbb{R}$ is .............. |
| 26 | The S.S. of the equation : $\left(x^{2}+3\right)\left(x^{3}+1\right)=0$ is ............. |
| 27 | If : $x<-\sqrt{7}<x+1$, then $x=\ldots \ldots \ldots . . \quad$ (where $x$ is an integer) |
| 28 | If : $x<\sqrt{15}<x+1, x \in \mathbb{Z}$, then $x=$ |
| 29 | If : $x<\sqrt{19}<x+1$, then $x=\ldots \ldots \ldots$ |
| 30 | If $x<\sqrt{20}<x+1, x \in \mathbb{Z}$, then $x=\ldots \ldots \ldots . . . .$. |
| 31 | If $x<\sqrt{10}<x+1, x \in \mathbb{Z}_{+}$, then $x=$ |
| 32 | $\mathbb{Q} \cap \widehat{\mathbb{Q}}=\ldots \ldots . . . . . . .$. |
| 33 | $\mathbb{Q} \cup \mathbb{Q}=\ldots \ldots . . . . . . .$. |
| 34 | $1 \mathbb{R}_{+} \cup \mathbb{R}_{-}=\ldots \ldots \ldots \ldots \ldots$ |
| 35 | The multiplicative inverse of $\frac{\sqrt{5}}{10}$ is |

36 The multiplicative inverse of the number : $(\sqrt{3}+\sqrt{2})$ is


## 2 Choose the correct answer:

$1(2 \sqrt[3]{2})^{3}=$
(a) 4
(b) 8
(c) 16
(d) 40
[1] $\sqrt[3]{(-8)^{2}}=$
2
(a) 2
(b) -2
(c) 4
(d) -4
$\sqrt{8}-\sqrt{2}=$
(a) $\sqrt{6}$
(b) 2
(c) $\sqrt{2}$
(d) 1
$\sqrt{25}-\sqrt[3]{-125}=$
(a) 10
(b) zero
(c) 5
(d) $\pm 5$
$-2 \sqrt{3} \times \sqrt{3}=$
(a) $-2 \sqrt{3}$
(b) -6
(c) $2 \sqrt{3}$
(d) 6
$\sqrt{3}(\sqrt{11}+\sqrt{3})=$
(a) $3 \sqrt{11}+2$
(b) $\sqrt{33}+3$
(c) $11 \sqrt{3}+2$
(d) $2 \sqrt{11}+3$
$\sqrt{9}+\sqrt[3]{-27}=$
(a) 0
(b) -6
(c) -9
(d) $\pm 6$
$\sqrt[3]{-8}+\sqrt{4}=$
(a) 4
(b) -4
(c) zero
(d) 8

9
$\sqrt{25}=\sqrt[3]{\cdots \cdots \cdots \cdots \cdots}$
(a) 5
(b) 15
(c) 125
(d) -5

| 10 | If $: \sqrt[3]{y}=-\sqrt{9}$, then $y=$ $\qquad$ <br> (a) 3 <br> (b) -3 | (c) -27 |  | (d) 27 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | $\sqrt{25}+\sqrt[3]{-27}=\sqrt{\ldots \ldots \ldots \ldots \ldots}$ <br> (a) 8 <br> (b) 4 |  | (c) 2 |  | (d) 5 |
| 12 | $\sqrt[3]{27}=\sqrt{x+3}$, then $x=$ <br> (a) 3 <br> (b) 6 | (c) 9 |  | (d) 12 |  |

If $x^{3}=64$, then $\sqrt{x}=$
(a) 4
(b) -4
(c) 2
(d) -2

The solution set for the equation : $X^{2}=2$ in $\mathbb{R}$ is
(a) $\{\sqrt{2}\}$
(b) $\{-\sqrt{2}\}$
(c) $\{\sqrt{2},-\sqrt{2}\}$
(d) $\{2\}$

The S.S. of the equation: $x^{2}+3=0$ in $\mathbb{R}$ is
(a) $\varnothing$
(b) $-\sqrt{3}$
(c) $\sqrt{3}$
(d) $\pm \sqrt{3}$

The S.S. of the equation : $x^{2}+5=9$ where $x \in \mathbb{Q}$ is
(a) $\{4\}$
(b) $\{-2,2\}$
(c) $\varnothing$
(d) $\{13\}$

The S.S. of the equation: $X^{3}+8=0$ in $\mathbb{R}$ is
(a) $\{2\}$
(b) $\{2 \sqrt{2}\}$
(c) $\{-2\}$
(d) $\{2,-2\}$

The solution set for the equation: $X^{3}+9=8$ in $\mathbb{R}$ is
(a) $\{8\}$
(b) $\{9\}$
(c) $\{3\}$
(d) $\{-1\}$

The S.S. of the equation : $x^{3}+27=0$ in $\mathbb{R}$ is
(a) $\{3\}$
(b) $\{-3\}$
(c) $\{3 \sqrt{3}\}$
(d) $\{ \pm 3 \sqrt{3}\}$

20 The S.S. in $\mathbb{R}$ of the equation : $x^{3}+11=12$ in $\mathbb{R}$ is
(a) $\{11\}$
(b) $\{12\}$
(c) $\{1\}$
(d) $\{3\}$

21
If : $\frac{3}{a+2}$ is a rational number then $\mathrm{a} \neq$
(a) 3
(b) 5
(c) -2
(d) zero

If $n \in \mathbb{Z}_{+}, n<\sqrt{26}<n+1$, then $n=$
22
(a) 25
(b) 5
(c) -5
(d) 24

The irrational number in the following numbers is
(a) $\sqrt{\frac{1}{9}}$
(b) $\sqrt{\frac{1}{4}}$
(c) $\sqrt{3}$
(d) $\sqrt[3]{27}$

The irrational number in the following numbers is
(a) $\sqrt{\frac{1}{4}}$
(b) $\sqrt[3]{8}$
(c) $\sqrt{\frac{4}{9}}$
(d) $\sqrt{2}$

The irrational number lies between 2 and 3 is
(a) $\sqrt{10}$
(b) $\sqrt{7}$
(c) 2.5
(d) $\sqrt{3}$

The irrational number lies between 3 and 4 is
26
(a) 3.5
(b) $\frac{1}{8}$
(c) $\sqrt{20}$
(d) $\sqrt{13}$
$\square$ The area of a square whose side length is $\sqrt{3} \mathrm{~cm} .=\ldots \ldots \ldots \ldots . \mathrm{cm}^{2}$
27
(a) $4 \sqrt{3}$
(b) 9
(c) 3
(d) 6
$\square$ The square whose area is $10 \mathrm{~cm}^{2}$, its side length is $\qquad$ cm .
(a) 5
(b) -5
(c) $\sqrt{10}$
(d) $-\sqrt{10}$

29
The multiplicative inverse of $\frac{\sqrt{3}}{3}$ is
(a) $\sqrt{3}$
(b) 1
(c) 3
(d) $-\sqrt{3}$

30 |  | $\begin{array}{l}\mathbb{Q} \cap \mathscr{Q} \\ \text { (a) }\{0\}\end{array}$ |
| :--- | :--- |

ㄹ.
(b) $\varnothing$
(c) $\mathbb{R}$
(d) $\mathbb{Q}$
If: $\sqrt[3]{y}=-\sqrt{9}$, then $y=$
(a) 3
(b) -3
(c) -27
(d) 27
$\sqrt{25}+\sqrt[3]{-27}=\sqrt{ }$
(a) 8
(b) 4
(c) 2
(d) 5
$\sqrt[3]{27}=\sqrt{x+3}$, then $x=$
(a) 3
(b) 6
(c) 9
(d) 12

The solution set for the equation: $X^{2}=2$ in $\mathbb{R}$ is
(a) $\{\sqrt{2}\}$
(b) $\{-\sqrt{2}\}$
(c) $\{\sqrt{2},-\sqrt{2}\}$
(d) $\{2\}$
$\sqrt[3]{-27}+3=$
(a) zero
(b) 3
(c) 6
(d) -24

If $X^{3}=64$, then $\sqrt{x}=$
(a) 4
(b) -4
(c) 2
(d) -2

If $x<\sqrt[3]{36}<x+1, x \in \mathbb{Z}$, then $x=$
(a) 2
(b) 3
(c) 4
(d) 6
$\sqrt[3]{8}$ ..............] ]-, 4 [
(a) $\in$
(b) $\notin$
(c) $\subset$
(d) $\not \subset$

39
$5 \in$
(a) $] 5, \infty[$
(b) $]-\infty, 5[$
(c) $(3,5)$
(d) $[-5, \infty[$

40
The opposite figure represents the interval
...............

(a) $[-4,8[$
(b) $[8,-4]$
(c) $[-4,8]$
(d) $]-4,8[$
$\mathbb{R}=$
(a) $\mathbb{R}_{+} \cap \mathbb{R}_{-}$
(b) $\mathbb{R}_{+} \cup \mathbb{R}_{-}$
(c) $]-\infty, \infty[$
(d) $\mathbb{Q} \cap \mathbb{Q}$
$\mathbb{R}_{+}=$
(a) $] 0, \infty[$
(b) $]-\infty, 0[$
(c) $[0, \infty[$
(d) $]-\infty, 0]$
$\mathbb{R}_{-}=$
(a) $] 0, \infty[$
(b) $]-\infty, 0[$
(c) $[0, \infty[$
(d) $]-\infty, 0]$

The set of non-negative real numbers $=$
(a) $] 0, \infty[$
(b) $]-\infty, 0[$
(c) $[0, \infty[$
(d) $]-\infty, 0]$

The set of non-positive real numbers $=$
(a) $] 0, \infty[$
(b) $]-\infty, 0[$
(c) $[0, \infty[$
(d) $]-\infty, 0]$
$]-1,3] \cap[-3,-1]=$
(a) $\varnothing$
(b) $\{-3\}$
(c) $\{-1\}$
(d) $\{3\}$

47
$[1,5] \cap]-2,3]=$
(a) $\{1,3\}$
(b) $] 1,3[$
(c) $[1,3]$
(d) $[1,3[$
] $-3,5[\cap[0,3[=$
(a) $[0,3]$
(b) $[0,3[$
(c) $]-3,0[$
(d) $[3,5[$
$[2,7]-\{2,7\}=$
(a) $[1,6]$
(b) $\varnothing$
(c) $] 2,7[$
(d) $\{0\}$

50
$[-2,5]-\{-2,6\}=$
$\begin{array}{ll}\text { (a) }]-2,5[ & \text { (b) }]-2,6[ \end{array}$
(c) $]-2,5]$
(d) $[-2,5[$
' $[-3,7]-\{-3,7\}=$
(a) $[-3,7[$
(b) ] $-3,7]$
(c) $]-3,7[$
(d) $(0,0)$

## 3 Essay Problems :

Find the value of $x$ in each of the following : $\sqrt[3]{x}=5$

Find the value of $x$ in each of the following : $x^{3}=-8$

Find the S.S. of each of the following equations in $\mathbb{Q}: \mathbb{C} x^{3}+27=0$
3

Find the $S . S$. of each of the following equations in $\mathbb{Q}: \mathbb{C} x^{3}+7=8$

Find the S.S. of each of the following equations in $\mathbb{Q}: \mathbb{C}(x+3)^{3}=343$

Find the S.S. of each of the following equations in $\mathbb{Q}: \mathbb{C l}(5 x-2)^{3}+10=18$

Find the edge length of a cube with volume $=15 \frac{5}{8} \mathrm{~cm}^{3}$.
-
[1] Find the inner edge length of a cube vessel with capacity of one litre. $\quad 10 \mathrm{~cm}$.» Find the diameter length of a sphere whose volume $=\frac{1372}{81} \pi$ cube unit. « $\frac{14}{3}$ length unit», Prove that : $\sqrt{2}$ is included between 1.4 and 1.5

Prove that : $\sqrt[3]{15}$ is included between 2.4 and 2.5

Determine the point that represents each of the following numbers on the number line :
(1) $\sqrt{3}$
(2) $-\sqrt{11}$
(3) $\sqrt{10}$
Arrange the following numbers descendingly :
13 (1) $\sqrt{62}, 8,-\sqrt{50}$ and $\sqrt{70}$
[2] $\sqrt{6}, 9,-\sqrt{10},-\sqrt{7},-\sqrt{50}$ and $\sqrt{101}$

14
Find the value of $X$ in each of the following cases and determine whether $x \in \mathbb{Q}$ or $x \in \mathbb{Q}:$
$15 x^{2}=10$
(2) $4 x^{2}=9$
(3) $x^{3}=125$
(4) $(x-1)^{2}=4$

If $X=[-1,4], Y=[3, \infty[, Z=\{3,4\}$, find using the number line
(1) XUY
(2) $\mathrm{X} \cap \mathrm{Y}$
(3) $\mathrm{X}-\mathrm{Z}$

If $\mathrm{A}=]-\infty, 3[, \mathrm{~B}=[-2,5]$
, find using the number line $: B-A, A \cap B, A \cup B$ and $\AA$

If $\mathrm{X}=[3, \infty[, Y=]-4,8[$
Find: (1) $X \cup Y$
(2) $X \cap Y$
(3) X

If $X=[-1,4]$ and $Y=[2,7]$, then find each of :
(1) $\mathrm{X} \cap \mathrm{Y}$
(2) $Y \cup X$

If $X=[-2,1], Y=[0, \infty[$
Find: (1) $\mathrm{X} \cap \mathrm{Y}$
(2) $X \cup Y$
(3) $Y-X$

If $X=[-1,4], Y=[3, \infty[$, find using the number line each of :
(1) $X \cup Y$
(a) $X-Y$

## SUMMMARY OF ALLL LESSONS

## Medians of triangle

The median of the triangle is the line segment drawn from any vertex of the triangle vertices to the midpoint of the opposite side of this vertex.

The medians of a triangle are concurrent.

- $2: 1$ from the vertex.

The point which divides the median of a triangle by the ratio $1: 2$ from the base is the point of the intersection of the medians of the triangle.


If $D$ is the midpoint of $B C$ , then AD is a median in $\triangle \mathrm{ABC}$

If $\overline{\mathrm{CD}}, \overline{\mathrm{BF}}$ and $\overline{\mathrm{AE}}$ are the medians of $\triangle \mathrm{ABC}$ where $\overline{\mathrm{CD}} \cap \overline{\mathrm{BF}} \cap \overline{\mathrm{AE}}=\{\mathrm{M}\}$
, then M is the intersection point of the medians of $\triangle \mathrm{ABC}$

If M is the intersection point of the medians of $\triangle \mathrm{ABC}$ , then :

- $\mathrm{DM}=\frac{1}{2} \mathrm{AM}$
- $\mathrm{AM}=2 \mathrm{DM}$
- $\mathrm{DM}=\frac{1}{3} \mathrm{AD}$
- $\mathrm{AM}=\frac{2}{3} \mathrm{AD}$

If $\mathrm{DM}: \mathrm{MA}=1: 2$ , then M is the intersection point of the medians of $\triangle \mathrm{ABC}$

The length of the median from the vertex of the right angle equals half the length of the hypotenuse.

If the length of the median drawn from a vertex of a triangle equals half the length of the opposite side to this vertex, then the angle at this vertex is right.

The length of the side opposite to the angle of measure $30^{\circ}$ in the right-angled triangle equals half the length of the hypotenuse.


If $\triangle \mathrm{ABC}$ is right-angled at $B$ in which :
$\mathrm{m}(\angle \mathrm{C})=30^{\circ}$ , then $\mathrm{AB}=\frac{1}{2} \mathrm{AC}$

In the right-angled triangle, the hypotenuse is the longest side of the triangle.


If $\triangle \mathrm{ABC}$ is right-angled at $B$, then
$\mathrm{AC}>\mathrm{AB}, \mathrm{AC}>\mathrm{BC}$

If $\triangle A B C$ is right-angled at $B$, then :

- $(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
- $(\mathrm{AB})^{2}=(\mathrm{AC})^{2}-(\mathrm{BC})^{2}$
- $(\mathrm{BC})^{2}=(\mathrm{AC})^{2}-(\mathrm{AB})^{2}$



## The isosceles triangle

The base angles of the isosceles triangle are congruent.

If two angles of a triangle are congruent, then the two sides opposite to these two angles are congruent and the triangle is isosceles.


If $\triangle \mathrm{ABC}$ in which : $m(\angle B)=m(\angle C)$
, then $\mathrm{AB}=\mathrm{AC}$

1 Complete the Following:
1 In $\triangle \mathrm{ABC}$ : if the point X is the midpoint of $\overline{\mathrm{BC}}$, then $\overline{\mathrm{AX}}$ is called
2 'The medians of the triangle are
3 The medians of the triangle intersect at

4
'The point of intersection of the medians of a triangle divides each median in the ratio from the vertex.

5
The points of concurrence of the medians of the triangle divides each median in the ratio from the base.

6
The point of intersection of the medians of the triangle divides each of them by the ratio 1:2 from

7
The point which divides the median of the triangle in the ratio $1: 2$ from the base is the point of

## In the opposite figure :

8
If $M$ is intersection point of medians
and $\mathrm{m}(\angle \mathrm{B})=90^{\circ}, \mathrm{MF}=1.5 \mathrm{~cm}$.

, then the length of $\overline{\mathrm{AC}}=$

## In the opposite figure :

9 If $M$ is the point of intersection of
the medians of $\triangle \mathrm{ABC}$, then $\mathrm{AM}=$
AD


10 In the opposite figure :
If : $\mathrm{MF}=\mathbf{2 \mathrm { cm } . , \text { then } \mathrm { DF } =}$


## In the opposite figure :

In $\triangle \mathrm{ABC}, \mathrm{M}$ is the point of concurrence of the medians
, then $\mathrm{DM}=$
cm.


## In the opposite figure :

If : F and N are the midpoints of $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$
Respectively, $\overline{\mathrm{BN}} \cap \overline{\mathrm{CF}}=\{\mathrm{m}\}, \mathrm{AB}=6 \mathrm{~cm}$.
, $\mathrm{AC}=10 \mathrm{~cm} ., \mathrm{BM}=4 \mathrm{~cm} ., \mathrm{CF}=9 \mathrm{~cm}$.


Find the perimeter of figure : AFMN


#### Abstract

In the right-angled triangle the length of the median from the vertex of the right angle equal .......... the length of the hypotenuse.


## In the right-angled triangle, the length of the median from the vertex of the right angle equals

If the length of the median drawn from a vertex of a triangle equals half the length of the opposite side to this vertex in length , then

The length of the side opposite to the angle of measure $30^{\circ}$ in the right-angled triangle equals .......... the length of the hypotenuse.

The length of side opposite to the angle whose measure $=30^{\circ}$ in the right-angled triangle $=\ldots \ldots . . .$.

The length of the hypotenuse on the right-angled triangle equals the length of a side opposite to the angle of measure $30^{\circ}$

In $\triangle \mathrm{LMN}$ : If $\mathrm{m}(\angle \mathrm{L})=30^{\circ}, \mathrm{m}(\angle \mathrm{N})=60^{\circ}, \mathrm{NM}=4 \mathrm{~cm}$., then $\mathrm{LN}=$ cm.

If ABC is a right-angled triangle at $\mathrm{B}, \mathrm{AB}=6 \mathrm{~cm} ., \mathrm{BC}=8 \mathrm{~cm}$., if $\overline{\mathrm{BD}}$ is a median of triangle ABC , then $\mathrm{BD}=$ cm .

21 In $\triangle \mathrm{ABC}, \mathrm{m}(\angle \mathrm{C})=60^{\circ}, \mathrm{m}(\angle \mathrm{B})=90^{\circ}, \mathrm{AC}=8 \mathrm{~cm}$., then $\mathrm{BC}=$ cm .

In $\triangle \mathrm{ABC}$ if $\mathrm{m}(\angle \mathrm{A})=30^{\circ}$ and $\mathrm{m}(\angle \mathrm{B})=90^{\circ}$, then $\mathrm{BC}=\ldots \ldots \ldots . \mathrm{AC}$
If $A B C$ : Is a right-angled at $B, A B=\frac{1}{2} A \bar{C}$, then $m(\angle C)=$
If ABC is a right-angled triangle at B and $\mathrm{AB}=\frac{1}{2} \mathrm{AC}$, then $\mathrm{m}(\angle \mathrm{A})=$

ABC is a right-angled triangle at B, if $\mathrm{AC}=2 \mathrm{BC}$, then $\mathrm{m}(\angle \mathrm{C})=$ $\qquad$

The two base angles in an isosceles triangle are
$27 \Delta \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{C})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{A})=$
28 In the $\triangle \mathrm{ABC}: \mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{A})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$ $\qquad$
The $\triangle \mathrm{ABC}$ is an isosceles and right-angled triangle if $\mathrm{m}(\angle \mathrm{B})=90^{\circ}$, then $\mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{C})=$ $\qquad$

30 In $\triangle A B C$, if $A B=A C$ and $m(\angle A)=80^{\circ}$, then $m(\angle B)=m(\angle \ldots \ldots \ldots \ldots)=\ldots \ldots \ldots .{ }^{\circ}$
31 In $\triangle \mathrm{ABC}$ : if $\mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{B})=60^{\circ}$, then the triangle is an
32 In $\triangle \mathrm{ABC}:$ If $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{m}(\angle \mathrm{A})=2 \mathrm{~m}(\angle \mathrm{C})$, then $\mathrm{m}(\angle \mathrm{B})=$ $\qquad$

The triangle whose side lengths $3 \mathrm{~cm} .,(\chi+1)$, and 6 cm . become isosceles triangle when $\chi=$

34 The length of side opposite to the angle whose measure $=30^{\circ}$ in the right-angled triangle $=$

The length of the hypotenuse on the right-angled triangle equals the length of a side opposite to the angle of measure $30^{\circ}$

36 In $\triangle \mathrm{LMN}$ : If $\mathrm{m}(\angle \mathrm{L})=30^{\circ}, \mathrm{m}(\angle \mathrm{N})=60^{\circ}, \mathrm{NM}=4 \mathrm{~cm}$., then $\mathrm{LN}=$ cm.

If ABC is a right-angled triangle at $\mathrm{B}, \mathrm{AB}=6 \mathrm{~cm}$., $\mathrm{BC}=8 \mathrm{~cm}$., if $\overline{\mathrm{BD}}$ is a median of triangle ABC , then $\mathrm{BD}=$ cm.

38 In $\triangle \mathrm{ABC}, \mathrm{m}(\angle \mathrm{C})=60^{\circ}, \mathrm{m}(\angle \mathrm{B})=90^{\circ}, \mathrm{AC}=8 \mathrm{~cm}$., then $\mathrm{BC}=$ cm .

39 I In $\triangle \mathrm{ABC}$ if $\mathrm{m}(\angle \mathrm{A})=30^{\circ}$ and $\mathrm{m}(\angle \mathrm{B})=90^{\circ}$, then $\mathrm{BC}=$ $\qquad$ AC

40
If ABC : Is a right-angled at $\mathrm{B}, \mathrm{AB}=\frac{1}{2} \mathrm{AC}$, then $\mathrm{m}(\angle \mathrm{C})=$

## Choose the correct answer:

The medians of the triangle intersect at $\cdots \cdots . . . .$. point.
1
(a) 1
(b) 2
(c) 3
(d) 4

The right-angled triangle has medians.
2
(a) 0
(b) 1
(c) 2
(d) 3

The number of medians in the right-angled triangle $=$
(a) 3
(b) 2
(c) 1
(d) 0

The point of intersection of the medians in the triangle divides each of them by the
4 ratio ........... from the vertex.
(a) $1: 3$
(b) $3: 1$
(c) $2: 1$
(d) $1: 2$

The point of concurrence of the medians of the triangle divides each median in the
5 ratio of $\qquad$ from the base.
(a) $1: 2$
(b) $1: 3$
(c) $2: 1$
(d) $3: 1$

If $\overline{\mathrm{AD}}$ is a median of triangle ABC , and M is the point of intersection of the 6 medians, then $\mathrm{AM}=$
(a) $\frac{1}{3}$
(b) $\frac{2}{3}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$
, $\overline{\mathrm{AD}}$ is a median in $\triangle \mathrm{ABC}, \mathrm{M}$ is the point of intersection of its medians,
7 then $\mathrm{AM}=$ MD
(a) 2
(b) $\frac{1}{2}$
(c) 3
(d) $\frac{1}{3}$

If $\overline{\mathrm{XE}}$ is a median in $\Delta \mathrm{XYZ}, \mathrm{M}$ is the point of intersection of its medians,
8 then $\mathrm{EM}=\ldots \ldots \ldots . . \mathrm{XE}$
(a) $\frac{1}{2}$
(b) 2
(c) $\frac{1}{3}$
(d) $\frac{2}{3}$

In $\triangle \mathrm{ABC}$ : If $\mathrm{AD}=6 \mathrm{~cm}$. is a median and M is a point of concurrent, then MA = $\qquad$ cm.
(a) 6 cm .
(b) 3 cm .
(c) 2 cm .
(d) 4 cm .
10
If $\overline{\mathrm{AD}}$ is a median of $\triangle \mathrm{ABC}, \mathrm{M}$ is the point of intersection of its medians and $\mathrm{AM}=6 \mathrm{~cm}$., then $\mathrm{AD}=$
(a) 12 cm .
(b) 6 cm .
(c) 18 cm .
(d) 9 cm .

## oose the correct answer :

## In the opposite figure :

11
$\overline{\mathrm{AD}}$ is a median in $\triangle \mathrm{ABC}, \mathrm{M}$ is the point of intersection of the medians, $\mathrm{MD}=2 \mathrm{~cm}$., then $\mathrm{AD}=$ cm.

(a) 2
(b) 4
(c) 6
(d) 8

The length of the hypotenous of the right-angled triangle $=$ $\qquad$ the length of the median which drawn from the vertex of the right-angle.
(a) half
(b) twice
(c) third
(d) quarter

The length of the median drawn from the vertex of right angle in the right-angled triangle $=\cdots \cdots \cdots$ the length of the hypotenuse of the triangle.
(a) 2
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$

In the right-angled triangle, the length of the median from the vertex of the right angle equal $\cdots \cdots \cdots$ the length of the hypotenuse.
(a) $\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) 2

In the right-angled triangle, the length of the median from the vertex of the right angle equals the length of hypotenuse.
(a) half
(b) twice
(c) third
(d) forth

If $\triangle \mathrm{ABC}$ is a right-angled at $\mathrm{B}, \mathrm{AB}=6 \mathrm{~cm}$., $\mathrm{BC}=8 \mathrm{~cm}$., then the length of the medians drawn from $B$ is $\cdots \cdots \cdots \cdots$.
(a) 10
(b) 8
(c) 6
(d) 5

17 In $\triangle A B C$ which is right at $B$, if $A C=20 \mathrm{~cm}$., then the length of the median of the triangle drawn from $B$ equals
(a) 10 cm .
(b) 8 cm .
(c) 6 cm .
(d) 5 cm .

In $\triangle \mathrm{ABC}, \mathrm{m}(\angle \mathrm{B})=90^{\circ}, \mathrm{AC}=12 \mathrm{~cm}$. and $\overline{\mathrm{BD}}$ is a median in $\triangle \mathrm{ABC}$, then
$\qquad$ cm.
(a) 12
(b) 6
(c) 24
(d) 10

The length of the side opposite to the angle of measure $30^{\circ}$ in the right-angled the length of the hypotenuse.
(a) twice
(b) half
(c) square
(d) equals

Triangle ABC : If $\mathrm{m}(\angle \mathrm{A})=30^{\circ}, \mathrm{m}(\angle \mathrm{B})=90^{\circ}$, then $\mathrm{BC}=$
(a) $\frac{1}{2} \mathrm{AB}$
(b) $\frac{1}{2} \mathrm{AC}$
(c) 2 AB
(d) 2 AC

In $\triangle \mathrm{ABC}$ if : $\mathrm{m}(\angle \mathrm{B})=90^{\circ}$ and $\mathrm{m}(\angle \mathrm{A})=60^{\circ}$, then $\mathrm{AC}=$

## AB

(a) 2
(b) $=$
(c) $\frac{1}{2}$
(d) $\frac{1}{3}$
$\triangle \mathrm{ABC}:$ if $\mathrm{m}(\angle \mathrm{A})=30^{\circ}$ and $\mathrm{m}(\angle \mathrm{B})=90^{\circ}$, then $\mathrm{AC}=$
(a) $\frac{1}{2} \mathrm{BC}$
(b) 2 BC
(c) 2 AB
(d) BC
(a) 20
(b) 15
(c) 10
(d) 5

In $\Delta \mathrm{XYZ}$, if $\mathrm{m}(\angle \mathrm{Y})=90^{\circ}, \mathrm{m}(\angle \mathrm{X})=30^{\circ}$ and $\mathrm{XZ}=20 \mathrm{~cm}$., then cm .
(a) 5
(b) 8
(c) 20
(d) 10

In the rectangle ACBD , if $\mathrm{AC}=10 \mathrm{~cm}$., then $\mathrm{BD}=$
(a) 5
(b) 10
(c) 15
(d) 20

In any isosceles triangle, the type of the base angles is
(a) acute.
(b) right.
(c) obtuse.
(d) reflex.

27
The base angles of the isosceles triangle are
(a) congruent.
(b) alternate.
(c) corresponding.
(d) supplementary.

If measure of one of the two base angles of the isosceles triangle equals $40^{\circ}$ then the measure of the vertex angle $=$ $\qquad$ .
(a) 40
(b) 100
(c) 80
(d) 50

29
In $\triangle \mathrm{ABC}: \mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{B})=50^{\circ}$, then $\mathrm{m}(\angle \mathrm{A})=$
(a) 65
(b) 80
(c) 50
(d) 100

30
An isosceles triangle, one of its base angles has measure $50^{\circ}$, then the measure of the vertex angle $=$
(a) $50^{\circ}$
(b) $60^{\circ}$
(c) $70^{\circ}$
(d) $80^{\circ}$

In the isosceles triangle, if the measure of one of the two base angle is $70^{\circ}$, then 31 the measure of its vertex angle is
(a) $70^{\circ}$
(b) $110^{\circ}$
(c) $20^{\circ}$
(d) $40^{\circ}$

32
The measure of one angle of the two base angles of the isosceles $=75^{\circ}$, then the measure of the vertex angle $=$
(a) $50^{\circ}$
(b) $75^{\circ}$
(c) $30^{\circ}$
(d) $105^{\circ}$

33
In a triangle ABC : If $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$, then $\mathrm{m}(\angle \mathrm{C})=$
(a) $40^{\circ}$
(b) $70^{\circ}$
(c) $140^{\circ}$
(d) $50^{\circ}$

34
i In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{A})=50^{\circ}$, then $\mathrm{m}(\angle \mathrm{B})=$
(a) $50^{\circ}$
(b) $65^{\circ}$
(c) $130^{\circ}$
(d) $100^{\circ}$

35
If the measure of an angle of the isosceles triangle is $100^{\circ}$, then the measure of one of the other angles $=$
(a) $50^{\circ}$
(b) $80^{\circ}$
(c) $40^{\circ}$
(d) $100^{\circ}$

36 , $\triangle \mathrm{XYZ}$ is an isosceles triangle in which $\mathrm{m}(\angle \mathrm{X})=100^{\circ}$, then $\mathrm{m}(\angle \mathrm{Y})=$ . ${ }^{\circ}$
(a) 100
(b) 80
(c) 60
(d) 40

37
ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{m}(\angle \mathrm{A})=110^{\circ}$, then $\mathrm{m}(\angle \mathrm{B})=$ $\qquad$
(a) $70^{\circ}$
(b) $55^{\circ}$
(c) $35^{\circ}$
(d) $110^{\circ}$

If the measure of an angle of the isosceles triangles is $120^{\circ}$, then the measure of one of the other angles $=$
(a) $60^{\circ}$
(b) $30^{\circ}$
(c) $40^{\circ}$
(d) $45^{\circ}$
) ABC is isosceles triangle $\mathrm{m}(\angle \mathrm{C})=130^{\circ}$, then $\mathrm{m}(\angle \mathrm{B})=$ $\qquad$
(a) 130
(b) 50
(c) 25
(d) 60
'The triangle whose sides lengths are $2 \mathrm{~cm} .,(X+1) \mathrm{cm}$ and 5 cm . becomes an isosceles triangle when $x=$ cm.
(a) 1
(b) 2
(c) 3
(d) 4

The triangle whose sides lengths are $3 \mathrm{~cm} .,(x+5)$ and 9 becomes an isosceles
41 if $x=\cdots \cdots \cdots \cdots$.
(a) 3
(b) 4
(c) 5
(d) 6

Triangle whose sides lengths are $2 \mathrm{~cm} .,(X-2) \mathrm{cm} ., 5 \mathrm{~cm}$. becomes isosceles
42 triangle when $\chi=$ cm.
(a) 3
(b) 4
(c) 5
(d) 7

## In the opposite figure :

ABC
(a)
(c)
(b) 2
(c) 3
(d) 4


ABCD is a parallelogram :
44
$\mathrm{DE}=\mathrm{DC}, \mathrm{m}(\angle \mathrm{A})=50^{\circ}$, then $\mathrm{m}(\angle \mathrm{EDC})=$
(a) $50^{\circ}$
(b) $60^{\circ}$
(c) $70^{\circ}$
(d) $80^{\circ}$


## 3 Essay Problems:

## In the opposite figure :

$E$ is the midpoint of $\overline{\mathrm{AB}}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{BC}}$
$\overline{\mathrm{AD}} \cap \overline{\mathrm{CE}}=\{\mathrm{M}\}, \mathrm{MC}=5 \mathrm{~cm}$. and $\mathrm{MD}=2 \mathrm{~cm}$.


Find: The length of each of $\overline{\mathrm{AD}}$ and $\overline{\mathrm{ME}}$.

## In the opposite figure :

$F, E, M$ and $H$ are the midpoints of
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}, \overline{\mathrm{ED}}$
2
and $\overline{\mathrm{FD}}$ respectively.
Prove that : $\mathrm{BC}=4 \mathrm{HM}$


## In the opposite figure :

ABC is a triangle in which $\overline{\mathrm{CD}}$,
$\overline{\mathrm{BE}}$ two medians intersects at M ,
if : $\mathrm{DC}=9 \mathrm{~cm} ., \mathrm{BM}=4 \mathrm{~cm} ., \mathrm{BC}=8 \mathrm{~cm}$.
Find : The perimeter of $\triangle \mathrm{MDE}$


In the opposite figure : $\triangle \mathrm{ABC}, \mathrm{AC}=8 \mathrm{~cm}$.,
4
$\mathrm{m}(\angle \mathrm{BAC})=60^{\circ}, \mathrm{m}(\angle \mathrm{ABC})=90^{\circ}$,
$D$ is the midpoint of $\overline{\mathrm{AC}}$
Find : The perimeter of $\triangle \mathrm{ABD}$


## In the opposite figure :

$\mathrm{m}(\angle \mathrm{B})=90^{\circ}, \mathrm{m}(\angle \mathrm{C})=30^{\circ}, \overline{\mathrm{BD}}$ is a median, $\mathrm{AB}=4 \mathrm{~cm}$. ,
Complete :
$\mathrm{AC}=$ $\qquad$ cm. , $\mathrm{BD}=$ $\qquad$ cm. , $\mathrm{AD}=$ cm.


## In the opposite figure :

$\triangle \mathrm{ABC}$ in which $\mathrm{m}(\angle \mathrm{B})=90^{\circ}, \mathrm{AC}=10 \mathrm{~cm}$.,
6
$\mathrm{m}(\angle \mathrm{C})=30^{\circ}, \mathrm{EC}=\mathrm{EB}, \mathrm{AD}=\mathrm{DC}$
Find with proof : (4) The perimeter of $\triangle \mathrm{ABD}$
(2) The length of $\overline{\mathrm{DF}}$


## In the opposite figure :

$m(\angle B)=90^{\circ}$,
$\mathrm{m}(\angle \mathrm{ACB})=30^{\circ}$,
$\mathrm{E}, \mathrm{F}$ are midpoints of $\overline{\mathrm{AD}}, \overline{\mathrm{DC}}$
Prove that : $\mathrm{AB}=\mathrm{EF}$


In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{ADC})=90^{\circ}$,
$8 \mathrm{~m}(\angle \mathrm{ACB})=30^{\circ}$, and $\overline{\mathrm{DE}}$ is a median of $\triangle \mathrm{ADC}$,
If $\mathrm{AB}=3 \mathrm{~cm}$.
Find : The length of $\overline{\mathrm{DE}}$


In the opposite figure :
$\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BDE})=90^{\circ}$
$9, m(\angle \mathrm{E})=30^{\circ}$
, D is the midpoint of $\overline{\mathrm{AC}}$
Prove that : $\mathrm{AC}=\mathrm{BE}$


In the opposite figure :
ACBD is a quadrilateral in which :
$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=\mathrm{BD}$
, $m(\angle \mathrm{ABD})=24^{\circ}$
Find : m ( $\angle \mathrm{CAD}$ )


In the opposite figure complete :
$\chi=\ldots \ldots \ldots .{ }^{\circ}$
11
$\mathrm{y}=\ldots \ldots \ldots{ }^{\circ}$,

$\mathrm{z}=$ $\qquad$。

## In the opposite figure :

$\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
, $\mathrm{AD}=\mathrm{AE}$
Prove that : $\mathrm{AB}=\mathrm{AC}$


In the opposite figure :
ABC is a triangle,
13
$\mathrm{AC}=\mathrm{BC}, \overrightarrow{\mathrm{AD}} / / \overline{\mathrm{BC}}, \mathrm{m}(\angle \mathrm{DAC})=40^{\circ}$
Find : The measure of angles in the $\triangle \mathrm{ABC}$


In the opposite figure :
$\mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{A})=30^{\circ}$,
$14 \mathrm{CB}=\mathrm{BD}=\mathrm{CD}$
Find : $m(\angle \mathrm{CBA})$


In the opposite figure :
$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=\mathrm{DC}$
Prove that $: m(\angle B A D)=90^{\circ}$.


| 1 | $\sqrt[3]{x^{6}}=\sqrt{\cdots \cdots} \quad\left(x^{3}, x^{2}, x, x^{4}\right)$ |
| :---: | :---: |
| 2 | The $S . S$ of the equation: $x\left(x^{2}-1\right)=0$ in $R$ is. $\qquad$ $(\{0\},\{1\},\{-1\},\{0,-1 ; 1\})$ |
| 3 | $\mathbb{R}=\ldots \ldots \ldots . . \quad\left(\mathbb{Q} \cap \mathbb{Q}^{\prime}, \mathbb{R}_{+} \cup \mathbb{R}_{-}, \mathbb{R}_{+} \cap \mathbb{R}_{-}, \mathbb{Q} \cup \mathbb{Q}^{\prime}\right)$ |
| 4 | The S.S of the equation $x^{2}-9=0$ in $\mathbb{R}$ is $\qquad$ $(3,-3, \pm 3, \emptyset)$ |
| 5 | $\mathbb{R}_{+} \cup \mathbb{R}_{-}=\ldots \ldots \ldots . . \quad(\emptyset,\{0\}, \mathbb{R}, \mathbb{R}-\{0\})$ |
| 6 | The irrational number located between 2 and 3 is $\qquad$ $(\sqrt{10}, \sqrt{7}, 2.5, \sqrt{3})$ |
| 7 | The irrational number located between 3 and 4 is $(\sqrt{6}, \sqrt{17}, 3.5, \sqrt[3]{29})$ |
| 8 | $\sqrt{x^{4}}=\sqrt[3]{\cdots \cdots}$ |
| 9 | The volume of sphere whose diameter length is $6 \mathbf{c m}=$ $\qquad$ $\mathrm{cm}^{3}$ $(9 \pi, 12 \pi, 36 \pi, 288 \pi)$ |
| 10 | if $x<\sqrt{51}<x+1, x \in Z$, then $x=$ $\qquad$ $(8,7,6,5)$ |
| 11 | if $\pi$ is the ratio between the circumference of the circle and its diameter length, then $\pi$ $\qquad$ $(\mathbb{Z}$ ) $\left.\mathbb{Q}, \mathbb{Q}^{\prime}\right)$ |
| 12 | The $S . S$ in $\mathbb{R}$ for the equation : $x^{3}+8=0$ is $\qquad$ $(\{4\},\{2\}, \emptyset,\{-2\})$ |
| 13 | $\{x: x \in \mathbb{R}, x>0\}=$ $\left.\mathbb{R}^{( }, \mathbb{R}^{( }, \mathbb{R}_{+}, \mathbb{Q}\right)$ |
| 14 | The cube whose volume is $216 \mathrm{~cm}^{3}$, then the area of one of its face $=$ $\qquad$ $\mathrm{cm}^{2}$ $(6,36,72,216)$ |
| 15 | $\sqrt[3]{9} \ldots \ldots . . \sqrt{4} \quad(<,>,=, \leq)$ |

| 16 | The $S . S$ of the equation $x^{2}+36=0$ in $\mathbb{R}$ is ........$(\{6\},\{-6\},\{6,-6\}, \emptyset)$ |
| :---: | :---: |
|  |  |
| 17 | if $\frac{x}{4}=\frac{16}{x^{2}}$, then $x=$ $\qquad$ $(2,4,8,16)$ |
| 18 | if the volume of a cube is $64 \mathrm{~cm}^{3}$, then the length of its edge $=\ldots . . . . . . \mathrm{cm}$ $(8,4,16,64)$ |
| 19 | $(2-\pi) \ldots \ldots \ldots \cdot \sqrt{(2-\pi)^{2}}$ $(<,>,=, \leq)$ |
| 20 | if the radius length of a sphere is $\mathbf{6} \mathbf{~ c m}$, then its volume is $\qquad$ $\mathrm{cm}^{3}$ $(6 \pi, 36 \pi, 72 \pi, 288 \pi)$ |
| 21 | if $\sqrt[3]{x}=\sqrt{16}$, then $x=$ $\qquad$ $(4,-4,64,-64)$ |
| 22 | $\mathbb{Q} \cap \mathbb{Q}^{`}=\ldots \ldots \ldots \ldots \ldots . \quad\left(\mathbb{Q}, \mathbb{R}^{(1)} \emptyset \mathbb{Q}^{\prime}\right)$ |
| 23 | $\{\boldsymbol{x}: \boldsymbol{x} \in \mathbb{R}, \boldsymbol{x} \leq 0\}=\ldots \ldots \ldots$. |
| 24 | The irrational number in the following is $\qquad$ $\left(\sqrt{\frac{1}{4}}, \sqrt{\frac{4}{9}}, \sqrt{2}, \sqrt[3]{8}\right)$ |

1 The cube whose volume is $8 \mathrm{~cm}^{3}$, then the sum of the lengths of its edges $=\ldots \ldots \ldots \ldots$
2 if $\sqrt[3]{x}=-5$, then $x=$
3 if $x<\sqrt{51}<x+1, x \in Z$, then $x=$
4 if the volume of a sphere $=\frac{9}{16} \pi$, then its radius $=\ldots \ldots \ldots . \mathrm{cm}$
$5 \quad \sqrt[3]{\cdots \cdots}=-\sqrt{4}$
6 if $x<\sqrt{19}<x+1, x \in \mathbb{Z}$, then $x=\ldots \ldots \ldots .$.
7 The $S . S$ of the equation : $\left(x^{2}+3\right)\left(x^{3}+1\right)=0$ is $\ldots \ldots \ldots \ldots \ldots . . . . . . . . . . . .$.

| 8 | $\mathbb{R}_{+} \cup \cup \mathbb{R}_{-}=\ldots \ldots \ldots \ldots$ |
| :---: | :---: |
| 9 | The $S . S$ of the equation $x^{2}-5=0$ is ............... where $x \in \mathbb{R}$ |
| 10 | The two consecutive integers which include the number $\sqrt{5}$ between them are $\qquad$ and $\qquad$ |
| 11 | A square, its area $50 \mathrm{~cm}^{2}$, then length of its diagonal $=\ldots \ldots \ldots \ldots \ldots . . . .$. |
| 12 | if the volume of a cube $=64 \mathrm{~cm}^{3}$, then its lateral area $=\ldots . . . . . . . . . \mathrm{cm}^{2}$ |
| 13 | $\sqrt[3]{27 a^{12}}=$ |
| 14 | if $x \in \mathbb{Z}$ and $x<\sqrt[3]{29}<x+1$, then $x=\ldots \ldots \ldots$. |
| 15 | The S.S of $x^{3}+9=0$ in $\mathbb{R}$ is |
| 16 | $\boldsymbol{R} \cap \boldsymbol{R}_{-}=\ldots \ldots \ldots \ldots$. |
| 17 | A cube of edge length 3 cm, then its volume $=\ldots \ldots . . \ldots . . \mathrm{cm}^{3}$ |
| 19 | The S.S of the equation : $(x-\sqrt{5})(x+\sqrt{3})=0$ in $\mathbb{Q}^{\prime}$ is .......... |
| 20 | if $8=\sqrt[3]{x}$, then $x=\ldots \ldots \ldots \ldots . .$. |
| 21 | $\mathbb{R}-\mathbb{Q}=$ |
| 22 | $\sqrt[3]{125}=\sqrt{\cdots \cdots}$ |
| 23 | $\mathbb{R}-\mathbb{R}_{-}=$ |
| 24 | The volume of a cube is $27 \mathrm{~cm}^{3}$, then the area of one of its faces is $\qquad$ cm |
| 25 | $\mathbb{R}=\ldots \ldots \ldots . . \cup \ldots \ldots . . . . . \cup$ |



| 1 | in triangle $A B C$, if $m(\angle C)=60, m(\angle B)=90$, then $A C=\ldots . . .$. $\left(2 B C, 2 A B, \frac{1}{2} A B, \frac{1}{2} A B\right)$ |
| :---: | :---: |
| 2 | in $\triangle A B C$, if $A B \perp B C$ and $A B=B C$, then $m(\angle A)=\ldots . . . . . . . . . .{ }^{\circ}$ |
| 3 | if $A D$ is a median of $\triangle A B C$, and $M$ is the point of concurrence of the median, then $A D$ $\qquad$ AM $\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}, \frac{3}{2}\right)$ |
| 4 | In a triangle $A B C$ if $A C=B C$ and $m(\angle C)=80$, then $m(\angle A)=\ldots . . . . .$. ( $80,50,100,40$ ) |
| 5 | The measure of any exterior angle of an equilateral triangle $\qquad$ $(45,60,90,120)$ |
| 6 | If $M$ is the point of intersection of the medians of $\triangle A B C$ and $D$ is the midpoint of $B C$, then $A D=\ldots . . . . . . . .$. <br> $\left(2 A M, 3 M D, \frac{2}{3} M D, A M\right)$ |
| 7 | The point of intersection of the medians of the triangle divides each median in the ratio of $\qquad$ from the vertex <br> (2:1, 2:3, <br> 1:2, 1:3) |
| 8 | if $\triangle A B C$ is a right angled at $A$ and $A B=A C$, then $m(\angle B)=, \ldots . . . . . . . . . .$. <br> ( $30,45,60,90$ ) |
| 9 | $A B C$ is an isosceles triangle, $m(\angle A)=100$, then $m(\angle B)=\ldots . . . .$. ( $40,50,80,100$ ) |
| 10 | if $A D$ is a median of $\triangle A B C$ and $M$ is the point of concurrence of the medians, then $A M=$ $\qquad$ $A D$ <br> $\left(\frac{2}{3}, \frac{1}{2}, \frac{3}{2}, 2\right)$ |
| 11 | In any isosceles triangle, the type of the base angles is $\qquad$ <br> ( acute, right, obtuse , reflex ) |
|  | ober Revision $\quad$ Prep $2 \quad$ Mr.Gamal El Sakka |


| 12 | then the measure of one of its base angle is |
| :---: | :---: |
|  | $(65,45,55,70)$ |
| 13 | in $\triangle A B C$ : if $m(\angle B)=90, A B=\frac{1}{2} A C$, then $m(\angle C)=$ $\qquad$ $(60,30,180,45)$ |
| 14 | The medians of the triangle intersect at $\qquad$ ( 4 points, 3 points, 2 points, a point ) |
| 15 | if $\triangle A B C$ is an equilateral triangle, then $m(\angle B)=$ $\qquad$ $(30,60,70,90$ |
| 16 | The mumber of medians of the right angled triangle $=$ $\qquad$ (one, two, three, four ) |
|  |  |
| 1 | The point of intersection of the medians of the triangle divides each of them in the ratio $\qquad$ : 5 from the vertex |
| 2 | If the length of the median drawn from a vertex of a triangle equals half the opposite side to this vertex in length, then $\qquad$ |
| 3 | $\text { in } \triangle A B C, A B=A C, m(\angle B)=x+30^{\circ}, m(\angle C)=2 x+5^{\circ}, \text { then } x=\ldots \ldots . . . .$ |
| 4 | in $\triangle A B C$, if $D$ is the midpoint of $B C$ and $A D=\frac{1}{2} B C$, then $m(\angle A)=$ |
| 5 | The base angles of the isosceles triangle are ... |
| 6 | $A B C$ is aright angled triangle at $B, m(\angle C)=30^{\circ}, A B=5 \mathrm{~cm}$, then $A C=$ $\qquad$ |
| 7 | In the right angled triangle the length of the median drawn from the vertex of the right angle $=$ $\qquad$ |


| 8 | in $\triangle A B C$, if $m(\angle A)=30^{\circ}, \mathrm{m}(\angle B)=90^{\circ}$, then $A C=\ldots \ldots \ldots . . .8 C$ |
| :---: | :---: |
| 9 | The medians of triangle are ................. |
| 10 | in $\triangle A B C$ if the point $X$ is the midpoint of $B C$, then $A X$ is called |
| 11 | The length of the side which is opposite to the angle of measure $30^{\circ}$ in the right angled triangle equals $\qquad$ the length of the hypotenuse |
| 12 | $A B C$ is a triangle in which $A B=A C$ and $m(\angle A)=60^{\circ}$, if its perimeter $=18 \mathrm{~cm}$ , then $B C=$ $\qquad$ cm. |
| 13 | If the measure of one of the base angles of an isoscelestriangle equals $50^{\circ}$, then the measure of the vertex angle equals $\qquad$ |
| 14 | If the angles of a triangle are congruent, then the triangle is |
| 15 | $\text { in } \triangle A B C \text {, if } A B=A C, m(\angle A)=70^{\circ} \text {, so } m(\angle C)=$ |
| 16 | The point of concurrence of the medians of the triangle divides each median in the ratio of $\qquad$ from the base |
| 17 | if $\triangle A B C$ is a right angled triangle at $B, m(\angle A)=30^{\circ}, A C=10 \mathrm{~cm}$., then $C B=. . . . . . . . . . . . . . C m$. |
| 18 | The length of the median of the right angled triangle drawn from the vertex of the right angle equals $\qquad$ The length of the hypotenuse |
| 19 | in $\triangle A B C$, if the point $D$ is the midpoint of $A B$ and the point $E$ is the midpoint of $A C$, then $D E=$ $\qquad$ BC |
| 20 | in $\triangle D E F$, if $D E=D F$, then $m(\angle E)=m(\angle \ldots \ldots)$ |
| 21 | The base angles of an isosceles triangle are |

$\mathrm{m}(\angle \mathrm{ABC})=90^{\circ}, \mathrm{m}(\angle \mathrm{C})=30^{\circ}$
, $\mathrm{AD}=\mathrm{DC}$ and $\mathrm{AC}=10 \mathrm{~cm}$.
Find : The perimeter of $\triangle A B D$


[^0]$\triangle \mathrm{ABC}$ is right-angled at B , $\mathrm{m}(\angle \mathrm{C})=30^{\circ}, \mathrm{D}$ is the midpoint of $\overline{\mathrm{AC}}$
, E is the midpoint of $\overline{\mathrm{BC}}, \mathrm{AC}=9 \mathrm{~cm}$.
Find the length of each of : $\overline{\mathrm{BD}}, \overline{\mathrm{BM}}$ and $\overline{\mathrm{AB}}$



ABC is a triangle $, \mathrm{AB}=\mathrm{AC}, \mathrm{m}(\angle \mathrm{B})=(\chi+5)^{\circ}$ , $\mathrm{m}(\angle \mathrm{C})=(2 x-15)^{\circ}$

Find : m ( $\angle \mathrm{A})$ (show all of your work)
$A B C$ is a right-angled triangle at $B$ , $\mathrm{m}(\angle \mathrm{ACB})=30^{\circ}, \mathrm{AB}=5 \mathrm{~cm}$.
, E is the midpoint of $\overline{\mathrm{AC}}$, if $\mathrm{DE}=5 \mathrm{~cm}$.
, prove that : $\mathrm{m}(\angle \mathrm{ADC})=90^{\circ}$

$9 A B C$ is a triangle in which $M E=2 \mathrm{~cm}, M D=3 \mathrm{~cm}$ $D E=4 \mathrm{~cm}, D, E$ are the midpoints of $\overline{B C}$ and $\overline{A C}$ respectively, find the perimeter of $\triangle M A B$



## M2 $(11)$


[^0]:    $\mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{BDE})=90^{\circ}$
    , $m(\angle \mathrm{E})=30^{\circ}$
    , D is the midpoint of $\overline{\mathrm{AC}}$
    Prove that : $\mathrm{AC}=\mathrm{BE}$

